中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于泡沫镍的MnO2整体式催化剂构筑及其催化氧化甲苯性能研究

赵朴臻 柳楚 黄前霖 吕路

赵朴臻, 柳楚, 黄前霖, 吕路. 基于泡沫镍的MnO2整体式催化剂构筑及其催化氧化甲苯性能研究[J]. 环境工程, 2023, 41(4): 71-78,115. doi: 10.13205/j.hjgc.202304010
引用本文: 赵朴臻, 柳楚, 黄前霖, 吕路. 基于泡沫镍的MnO2整体式催化剂构筑及其催化氧化甲苯性能研究[J]. 环境工程, 2023, 41(4): 71-78,115. doi: 10.13205/j.hjgc.202304010
ZHAO Puzhen, LIU Chu, HUANG Qianlin, LÜ Lu. FABRICATION OF NICKEL FOAM BASED MnO2 MONOLITHIC CATALYSTS AND ITS APPLICATION IN CATALYTIC ELIMINATION OF TOLUENE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 71-78,115. doi: 10.13205/j.hjgc.202304010
Citation: ZHAO Puzhen, LIU Chu, HUANG Qianlin, LÜ Lu. FABRICATION OF NICKEL FOAM BASED MnO2 MONOLITHIC CATALYSTS AND ITS APPLICATION IN CATALYTIC ELIMINATION OF TOLUENE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 71-78,115. doi: 10.13205/j.hjgc.202304010

基于泡沫镍的MnO2整体式催化剂构筑及其催化氧化甲苯性能研究

doi: 10.13205/j.hjgc.202304010
基金项目: 

国家重大科技专项(2017ZX07204001)

详细信息
    作者简介:

    赵朴臻(1997-),男,硕士,主要研究方向为环境催化材料。854381829@qq.com

    通讯作者:

    吕路(1975-),男,教授,主要研究方向为环境功能材料及污染控制技术。esellu@nju.edu.cn

FABRICATION OF NICKEL FOAM BASED MnO2 MONOLITHIC CATALYSTS AND ITS APPLICATION IN CATALYTIC ELIMINATION OF TOLUENE

  • 摘要: 开发兼具良好催化活性和优异稳定性的整体式催化剂是VOCs催化燃烧技术工业化应用的关键。传统的整体式催化剂通过在陶瓷载体上进行涂覆、浸渍等工艺制备而成,会导致活性组分分布不均、利用率低甚至失活等问题,从而降低整体式催化剂的性能。因此,利用泡沫镍与KMnO4之间的氧化还原反应,原位合成了MnO2整体式催化剂MnO2/NF-IS,考察了其催化氧化甲苯的性能,并通过XRD、SEM、TEM、H2-TPR、O2-TPD、XPS等手段对催化剂进行表征,并对MnO2/NF-IS催化氧化甲苯的反应路径进行探究。结果表明:基于泡沫镍原位合成的MnO2/NF-IS具有最佳的催化性能 (T90=248 ℃),优于粉末催化剂MnO2 (T90=271 ℃) 以及涂覆法制备的整体式催化剂MnO2/NF-WC (T90=293 ℃)。通过表征发现,MnO2/NF-IS具有特殊的多孔纳米片阵列的形貌和更高的氧空位含量,这可能是其性能优势的重要原因。研究成果为制备基于泡沫镍的MnO2整体式催化剂提供了新思路。
  • [1] GUO Y L, WEN M C, LI G Y, et al. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review[J]. Applied Catalysis B: Environmental, 2021, 281: 119447.
    [2] POSCHL U, SHIRAIWA M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene[J]. Chem Rev, 2015, 115(10): 4440-4475.
    [3] KONG J J, YANG T, RUI Z B, et al. Perovskite-based photocatalysts for organic contaminants removal: current status and future perspectives[J]. Catalysis Today, 2019, 327: 47-63.
    [4] SŁOMIŃSKA M, KRÓL S, NAMIEŚNIK J. Removal of BTEX compounds from waste gases; destruction and recovery techniques[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(14): 1417-1445.
    [5] 王小强, 杨宁, 徐力, 等. 铁锰基整体式催化剂催化燃烧甲苯和氯苯的性能[J]. 中国环境科学, 2022: 1-12.
    [6] ZHANG Q, WU D F. Mechanical stability of monolithic catalysts: the influence mechanism of primer on the washcoat adhesion to the metallic substrates[J]. ChemistrySelect, 2019, 4(11): 3214-3221.
    [7] LU X X, TANG W X, LI M L, et al. Mass transport in nanoarray monolithic catalysts: an experimental-theory study[J]. Chemical Engineering Journal, 2021, 405: 126906.
    [8] JIANG X D, XU W C, LAI S F, et al. Integral structured Co-Mn composite oxides grown on interconnected Ni foam for catalytic toluene oxidation[J]. RSC Advances, 2019, 9(12): 6533-6541.
    [9] ZHANG Q, MO S P, CHEN B X, et al. Hierarchical Co3O4 nanostructures in-situ grown on 3D nickel foam towards toluene oxidation[J]. Molecular Catalysis, 2018, 454: 12-20.
    [10] ZHANG X D, LV X T, BI F K, et al. Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation: the influence of MOFs precursors[J]. Molecular Catalysis, 2020, 482: 110701.
    [11] YANG W H, SU Z A, XU Z H, et al. Comparative study of α-, β-, γ-and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates[J]. Applied Catalysis B: Environmental, 2020, 260: 118150.
    [12] YANG W H, PENG Y, WANG Y, et al. Controllable redox-induced in-situ growth of MnO2 over Mn2O3 for toluene oxidation: active heterostructure interfaces[J]. Applied Catalysis B: Environmental, 2020, 278: 119279.
    [13] MO S P, ZHANG Q, REN Q M, et al. Leaf-like Co-ZIF-L derivatives embedded on Co2AlO4/Ni foam from hydrotalcites as monolithic catalysts for toluene abatement[J]. J Hazard Mater, 2019, 364: 571-580.
    [14] WANG J, YOSHIDA A, WANG P F, et al. Catalytic oxidation of volatile organic compound over cerium modified cobalt-based mixed oxide catalysts synthesized by electrodeposition method[J]. Applied Catalysis B: Environmental, 2020, 271: 118941.
    [15] 吴宇昊, 张健, 龙超. MCM-41孔径对负载MnO<em>x催化氧化甲苯性能的影响[J]. 环境科学学报, 2022, 42(3): 1-10.

    ZHAO Q, ZHENG Y F, SONG C F, et al. Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnO<em>x on Ni foam for VOC oxidation[J]. Applied Catalysis B: Environmental, 2020, 265: 118552.[16] ZHAO Y X, CHANG C, TENG F, et al. Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting[J]. Advanced Energy Materials, 2017, 7(18): 1700005. [17] MO S P, ZHANG Q, LI J Q, et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS[J]. Applied Catalysis B: Environmental, 2020, 264: 110701. [18] ZHENG Y F, LIU Q L, SHAN C P, et al. Defective ultrafine MnO<em>x nanoparticles confined within a carbon matrix for low-temperature oxidation of volatile organic compounds[J]. Environ Sci Technol, 2021, 55(8): 5403-5411. [19] SU Z, YANG W H, WANG C Z, et al. Roles of oxygen vacancies in the bulk and surface of CeO2 for toluene catalytic combustion[J]. Environ Sci Technol, 2020, 54(19): 12684-12692. [20] LIAO H Y, GUO X Z, HOU Y, et al. Construction of defect-rich Ni-Fe-doped K0.23 MnO2 cubic nanoflowers via etching prussian blue analogue for efficient overall water splitting[J]. Small, 2020, 16(10): 1905223. [21] ZHAO Y F, ZHANG J Q, WU W J, et al. Cobalt-doped MnO2 ultrathin nanosheets with abundant oxygen vacancies supported on functionalized carbon nanofibers for efficient oxygen evolution[J]. Nano Energy, 2018, 54: 129-137. [22] SONG L L, DUAN Y P, HE G H, et al. Enhanced thermal stability and dielectric performance of δ-MnO2 by Ni2+ doping[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(16): 15362-15370. [23]
  • 加载中
计量
  • 文章访问数:  169
  • HTML全文浏览量:  8
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-14
  • 网络出版日期:  2023-05-26
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回