CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于泡沫镍的MnO2整体式催化剂构筑及其催化氧化甲苯性能研究

赵朴臻 柳楚 黄前霖 吕路

赵朴臻, 柳楚, 黄前霖, 吕路. 基于泡沫镍的MnO2整体式催化剂构筑及其催化氧化甲苯性能研究[J]. 环境工程, 2023, 41(4): 71-78,115. doi: 10.13205/j.hjgc.202304010
引用本文: 赵朴臻, 柳楚, 黄前霖, 吕路. 基于泡沫镍的MnO2整体式催化剂构筑及其催化氧化甲苯性能研究[J]. 环境工程, 2023, 41(4): 71-78,115. doi: 10.13205/j.hjgc.202304010
ZHAO Puzhen, LIU Chu, HUANG Qianlin, LÜ Lu. FABRICATION OF NICKEL FOAM BASED MnO2 MONOLITHIC CATALYSTS AND ITS APPLICATION IN CATALYTIC ELIMINATION OF TOLUENE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 71-78,115. doi: 10.13205/j.hjgc.202304010
Citation: ZHAO Puzhen, LIU Chu, HUANG Qianlin, LÜ Lu. FABRICATION OF NICKEL FOAM BASED MnO2 MONOLITHIC CATALYSTS AND ITS APPLICATION IN CATALYTIC ELIMINATION OF TOLUENE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 71-78,115. doi: 10.13205/j.hjgc.202304010

基于泡沫镍的MnO2整体式催化剂构筑及其催化氧化甲苯性能研究

doi: 10.13205/j.hjgc.202304010
基金项目: 

国家重大科技专项(2017ZX07204001)

详细信息
    作者简介:

    赵朴臻(1997-),男,硕士,主要研究方向为环境催化材料。854381829@qq.com

    通讯作者:

    吕路(1975-),男,教授,主要研究方向为环境功能材料及污染控制技术。esellu@nju.edu.cn

FABRICATION OF NICKEL FOAM BASED MnO2 MONOLITHIC CATALYSTS AND ITS APPLICATION IN CATALYTIC ELIMINATION OF TOLUENE

  • 摘要: 开发兼具良好催化活性和优异稳定性的整体式催化剂是VOCs催化燃烧技术工业化应用的关键。传统的整体式催化剂通过在陶瓷载体上进行涂覆、浸渍等工艺制备而成,会导致活性组分分布不均、利用率低甚至失活等问题,从而降低整体式催化剂的性能。因此,利用泡沫镍与KMnO4之间的氧化还原反应,原位合成了MnO2整体式催化剂MnO2/NF-IS,考察了其催化氧化甲苯的性能,并通过XRD、SEM、TEM、H2-TPR、O2-TPD、XPS等手段对催化剂进行表征,并对MnO2/NF-IS催化氧化甲苯的反应路径进行探究。结果表明:基于泡沫镍原位合成的MnO2/NF-IS具有最佳的催化性能 (T90=248 ℃),优于粉末催化剂MnO2 (T90=271 ℃) 以及涂覆法制备的整体式催化剂MnO2/NF-WC (T90=293 ℃)。通过表征发现,MnO2/NF-IS具有特殊的多孔纳米片阵列的形貌和更高的氧空位含量,这可能是其性能优势的重要原因。研究成果为制备基于泡沫镍的MnO2整体式催化剂提供了新思路。
  • [1] GUO Y L, WEN M C, LI G Y, et al. Recent advances in VOC elimination by catalytic oxidation technology onto various nanoparticles catalysts: a critical review[J]. Applied Catalysis B: Environmental, 2021, 281: 119447.
    [2] POSCHL U, SHIRAIWA M. Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene[J]. Chem Rev, 2015, 115(10): 4440-4475.
    [3] KONG J J, YANG T, RUI Z B, et al. Perovskite-based photocatalysts for organic contaminants removal: current status and future perspectives[J]. Catalysis Today, 2019, 327: 47-63.
    [4] SŁOMIŃSKA M, KRÓL S, NAMIEŚNIK J. Removal of BTEX compounds from waste gases; destruction and recovery techniques[J]. Critical Reviews in Environmental Science and Technology, 2013, 43(14): 1417-1445.
    [5] 王小强, 杨宁, 徐力, 等. 铁锰基整体式催化剂催化燃烧甲苯和氯苯的性能[J]. 中国环境科学, 2022: 1-12.
    [6] ZHANG Q, WU D F. Mechanical stability of monolithic catalysts: the influence mechanism of primer on the washcoat adhesion to the metallic substrates[J]. ChemistrySelect, 2019, 4(11): 3214-3221.
    [7] LU X X, TANG W X, LI M L, et al. Mass transport in nanoarray monolithic catalysts: an experimental-theory study[J]. Chemical Engineering Journal, 2021, 405: 126906.
    [8] JIANG X D, XU W C, LAI S F, et al. Integral structured Co-Mn composite oxides grown on interconnected Ni foam for catalytic toluene oxidation[J]. RSC Advances, 2019, 9(12): 6533-6541.
    [9] ZHANG Q, MO S P, CHEN B X, et al. Hierarchical Co3O4 nanostructures in-situ grown on 3D nickel foam towards toluene oxidation[J]. Molecular Catalysis, 2018, 454: 12-20.
    [10] ZHANG X D, LV X T, BI F K, et al. Highly efficient Mn2O3 catalysts derived from Mn-MOFs for toluene oxidation: the influence of MOFs precursors[J]. Molecular Catalysis, 2020, 482: 110701.
    [11] YANG W H, SU Z A, XU Z H, et al. Comparative study of α-, β-, γ-and δ-MnO2 on toluene oxidation: oxygen vacancies and reaction intermediates[J]. Applied Catalysis B: Environmental, 2020, 260: 118150.
    [12] YANG W H, PENG Y, WANG Y, et al. Controllable redox-induced in-situ growth of MnO2 over Mn2O3 for toluene oxidation: active heterostructure interfaces[J]. Applied Catalysis B: Environmental, 2020, 278: 119279.
    [13] MO S P, ZHANG Q, REN Q M, et al. Leaf-like Co-ZIF-L derivatives embedded on Co2AlO4/Ni foam from hydrotalcites as monolithic catalysts for toluene abatement[J]. J Hazard Mater, 2019, 364: 571-580.
    [14] WANG J, YOSHIDA A, WANG P F, et al. Catalytic oxidation of volatile organic compound over cerium modified cobalt-based mixed oxide catalysts synthesized by electrodeposition method[J]. Applied Catalysis B: Environmental, 2020, 271: 118941.
    [15] 吴宇昊, 张健, 龙超. MCM-41孔径对负载MnO<em>x催化氧化甲苯性能的影响[J]. 环境科学学报, 2022, 42(3): 1-10.

    ZHAO Q, ZHENG Y F, SONG C F, et al. Novel monolithic catalysts derived from in-situ decoration of Co3O4 and hierarchical Co3O4@MnO<em>x on Ni foam for VOC oxidation[J]. Applied Catalysis B: Environmental, 2020, 265: 118552.[16] ZHAO Y X, CHANG C, TENG F, et al. Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting[J]. Advanced Energy Materials, 2017, 7(18): 1700005. [17] MO S P, ZHANG Q, LI J Q, et al. Highly efficient mesoporous MnO2 catalysts for the total toluene oxidation: oxygen-vacancy defect engineering and involved intermediates using in situ DRIFTS[J]. Applied Catalysis B: Environmental, 2020, 264: 110701. [18] ZHENG Y F, LIU Q L, SHAN C P, et al. Defective ultrafine MnO<em>x nanoparticles confined within a carbon matrix for low-temperature oxidation of volatile organic compounds[J]. Environ Sci Technol, 2021, 55(8): 5403-5411. [19] SU Z, YANG W H, WANG C Z, et al. Roles of oxygen vacancies in the bulk and surface of CeO2 for toluene catalytic combustion[J]. Environ Sci Technol, 2020, 54(19): 12684-12692. [20] LIAO H Y, GUO X Z, HOU Y, et al. Construction of defect-rich Ni-Fe-doped K0.23 MnO2 cubic nanoflowers via etching prussian blue analogue for efficient overall water splitting[J]. Small, 2020, 16(10): 1905223. [21] ZHAO Y F, ZHANG J Q, WU W J, et al. Cobalt-doped MnO2 ultrathin nanosheets with abundant oxygen vacancies supported on functionalized carbon nanofibers for efficient oxygen evolution[J]. Nano Energy, 2018, 54: 129-137. [22] SONG L L, DUAN Y P, HE G H, et al. Enhanced thermal stability and dielectric performance of δ-MnO2 by Ni2+ doping[J]. Journal of Materials Science: Materials in Electronics, 2019, 30(16): 15362-15370. [23]
  • 加载中
计量
  • 文章访问数:  155
  • HTML全文浏览量:  7
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-14
  • 网络出版日期:  2023-05-26
  • 刊出日期:  2023-04-01

目录

    /

    返回文章
    返回