PARAMETERS AND PERFORMANCE OF AN IMPROVED A2NSBR PROCESS ON PHOSPHORUS AND NITROGEN REMOVAL
-
摘要: 以模拟生活污水为处理对象,在常规A2NSBR工艺厌氧释磷后插入一段曝气吸磷过程,通过运行条件的优化,寻求解决后续缺氧段中硝酸盐与磷酸盐浓度的匹配问题,并在此基础上研究了改进后A2NSBR工艺的除磷脱氮特性及其缺氧段的运行控制问题。结果表明:在厌氧释磷后插入一段曝气吸磷过程,控制后续的缺氧搅拌初始ρ(NO-3-N)/ρ(PO3-4-P)为1.15~1.3时,可以提高系统反硝化除磷过程的稳定性,可避免因ρ(NO-3-N)/ρ(PO3-4-P)过低而出现"二次无效释磷"现象,并可将pH在线参数由上升转为下降的峰值点,作为在线控制缺氧段反硝化除磷过程结束的依据;取SBR池的充排水比为0.67时,系统能为其缺氧段初提供的NO-3-N量仅约为进水NH+4-N的40%;优化后改进型A2NSBR工艺典型周期的出水ρ(COD)为15.3 mg/L,出水ρ(PO3-4-P)、ρ(NO-3-N)、ρ(NH+4-N)和ρ(TN)的均值分别为0.27,0.36,12.81,13.17 mg/L,相应的COD、PO3-4-P和TN去除率依次为96.7%、96.8%和78.3%。Abstract: An aeration phosphorus-absorption process was inserted after the anaerobic phosphorus release of the conventional A2NSBR process for the treatment of simulated domestic sewage. Through the optimization of operating condition, the matching problems of nitrate and phosphate concentration in the subsequent anoxic section were solved, and then the phosphorus and nitrogen removal characteristics of the improved A2NSBR process and operation control of the anoxic section were studied. The results showed that the stability of the denitrification phosphorus removal process could be improved by inserting a stage of aeration phosphorus-absorption process after anaerobic phosphorus release, and controlling the concentration ratio of NO-3-N and PO3-4-P at the beginning of the subsequent anoxic stage to be 1.15~1.3, so as to avoid the phenomenon of secondary ineffective phosphorus release, due to the low ratio of NO-3-N/PO3-4-P; and the peak point at which the on-line pH parameter changed from rising to falling could be used as the basis for on-line controlling the end of denitrification and phosphorus removal process in the anoxic section. When the water filling and drainage ratio of the SBR tank was 0.67, the amount of NO-3-N that the system could initially provide for its anoxic section was only about 40% of NH+4-N in the influent. The effluent COD in the typical cycle of the improved A2NSBR process after optimization was 15.3 mg/L, and the average values of PO3-4-P, NO-3-N, NH+4-N and TN in the effluent were 0.27, 0.36, 12.81, 13.17 mg/L, respectively, and the corresponding removal rates of COD, PO3-4-P and TN were 96.7%, 96.8%, 78.3% respectively.
-
[1] 杜林竹, 艾胜书, 刘轩彤, 等. 城市污水处理新型生物脱氮除磷技术研究进展[J].净水技术, 2021, 40(11): 28-34. [2] PREISNER M, NEVEROVA E, KOWALEWSKI Z. Analysis of eutrophication potential of municipal wastewater[J]. Water Science & Technology, 2020, 81(9):1994-2003. [3] 曲红, 石雪颖, 聂泽兵, 等. 不同C/P下AOA-SBR工艺磷形态转化规律及污泥特性[J]. 中国环境科学, 2022, 42(1): 92-101. [4] 卢瑞朋, 徐文江, 李安峰, 等. 强化反硝化除磷的新型多级缺氧-好氧工艺[J].中国环境科学, 2022, 42(4):1706-1713. [5] ZHAO W H, PENG Y Z, WANG M X, et al. Nutrient removal and microbial community structure variation in the two-sludge system treating low carbon/nitrogen domestic wastewater[J]. Bioresource Technology,2019,294:122161. [6] ZHANG J B, SHAO Y T, WANG H C, et al. Current operation state of wastewater treatment plants in urban China[J]. Environmental Research, 2021, 195:110843. [7] 韩亚琳, 王福浩, 王群, 等. HSBBR运行模式对同步短程硝化反硝化脱氮及微生物群落特征的影响[J]. 环境工程, 2021, 39(1): 51-57. [8] 卞晓峥, 闫阁, 黄健平, 等. 双污泥系统反硝化除磷新工艺研究进展[J]. 水处理技术, 2021, 47(7): 19-24. [9] 李微, 刘静, 孟海停, 等. A2/N-SBR工艺短程反硝化除磷脱氮研究[J]. 环境工程, 2016, 34(8): 62-67. [10] KUBA T, VANLOOSDRECHT M, HEIJNEN J J. Phosphorus and nitrogen removal with minimal COD requirement by integration of denitrifying dephosphatation and nitrification in a two-sludge system[J]. Water Research, 1996, 30(7): 1702-1710. [11] LI H Y, BAI L,LONG B S,et al. Comparative analysis of phosphorus removal characteristics between two-stage SBR and single-stage SBR process for phosphorus and nitrogen removal[J]. Desalination and Water Treatment, 2020, 181: 197-203. [12] 王梅香, 赵伟华,王淑莹,等. A2N2 双污泥系统反硝化除磷工艺的启动与稳定[J]. 化工学报, 2016, 67(7): 2987-2997. [13] 史静, 吕锡武, 许正文, 等. A2N-IC-SBR改进工艺强化脱氮除磷特性[J]. 化工学报, 2014, 65(10): 4094-4100. [14] 王梅香, 赵伟华, 王淑莹, 等. A2N2系统反硝化除磷性能的优化及稳定运行[J]. 中国环境科学, 2016, 36(11): 3311-3320. [15] 刘莹, 彭永臻, 王淑莹. A2N工艺的固有弊端分析及其对策研究[J]. 工业用水与废水, 2010, 41(6): 1-5. [16] 张淼. A2O生物接触氧化工艺反硝化除磷性能优化及机理研究[D]. 北京: 北京工业大学, 2016. [17] 黄健平, 闫阁, 卞晓峥, 等. 反硝化除磷污水处理工艺影响因素分析[J]. 华北水利水电大学学报(自然科学版), 2021, 42(6): 100-106. [18] 赵伟华, 王梅香, 李健伟, 等. A2O工艺和A2O+BCO工艺的脱氮除磷性能比较[J]. 中国环境科学, 2019, 39(3):100-105. [19] 张建华, 王淑莹, 张淼, 等. 不同反应时间内碳源转化对反硝化除磷的影响[J]. 中国环境科学. 2017, 37(3): 989-997. [20] LV X M, SHAO M F, LI C L, et al. Operation performance and microbial community dynamics of phosphorus removal sludge with different electron acceptors[J]. Journal of Industrial Microbiology & Biotechnology, 2014, 41(7):1099-1108. [21] 李勇智, 彭永臻, 王淑滢. 强化生物除磷体系中的反硝化除磷[J]. 中国环境科学, 2003, 23(5): 543-546. [22] 王亚宜, 彭永臻, 王淑莹, 等. 碳源和硝态氮浓度对反硝化聚磷的影响及ORP的变化规律[J]. 环境科学, 2004, 25(4):54-58. [23] 张为堂, 薛晓飞, 庞洪涛, 等. 碳氮比对AAO-BAF工艺运行性能的影响[J]. 化工学报, 2015, 66(5): 1925-1930. [24] 程鹏, 卞晓峥, 宋博宇, 等. 不同电子受体反硝化除磷的研究进展[J]. 科技创新与应用, 2022,12(6): 130-133,136. [25] 高景峰. SBR法去除有机物和脱氮除磷在线模糊控制的基础研究[D]. 哈尔滨:哈尔滨工业大学, 2001. [26] 苗志加, 李宁, 高会杰, 等. 以亚硝酸盐为电子受体的反硝化除磷过程中N2O 积累的影响因素[J]. 环境工程学报, 2016, 10(6): 2807-2812. [27] 鞠洪海. 不同电子受体驯化聚糖菌反硝化过程及 N2O释放特性[J]. 环境工程, 2020, 38(9): 113-118. [28] 吕永涛,张瑶,闫建平, 等. 电子受体及投加方式对反硝化除磷及N2O释放影响[J]. 水处理技术, 2017, 43(12): 38-42. [29] YANG Q, PENG Y Z, LIU X H, et al. Nitrogen removal via nitrite from municipal wastewater at low temperatures using real-time control to optimize nitrifying communities[J]. Environmental Science & Technology, 2017, 41(23):8159-8164. [30] ZHAO W H, ZHANG Y, LV D M, et al. Advanced nitrogen and phosphorus removal in the pre-denitrification anaerobic/anoxic/aerobic nitrification sequence batch reactor (pre-A2NSBR) treating low carbon/nitrogen (C/N) wastewater[J]. Chemical Engineering Journal, 2016, 302: 296-304. [31] 穆剑楠. 基于DO与ORP短程硝化反硝化SBR实时控制研究[D]. 郑州:郑州大学, 2019. [32] 葛士建, 王淑莹, 杨岸明, 等. 反硝化过程中亚硝酸盐积累特性分析[J]. 土木建筑与环境工程, 2011, 33(1): 140-146. [33] 龙北生, 刘红波,肖国拾, 等. 两级 SBR工艺去除磷、氮及有机物效能分析[J]. 环境科学, 2009, 30(9): 2609-2614.
点击查看大图
计量
- 文章访问数: 258
- HTML全文浏览量: 28
- PDF下载量: 10
- 被引次数: 0