EXPLORATION OF MANUAL FINE REGULATION OF CARBON SOURCE DOSAGE IN AN ADVANCED WASTEWATER TREATMENT PLANT
-
摘要: 某污水深度污水处理厂的瞬时进水量波动较大,反硝化生物滤池存在碳源投加不经济和出水TN不稳定的问题。根据历史甲醇投加量及水质数据得知,实际反硝化C/N约为7,制定了《甲醇加药量指导表》。操作人员可根据进水流量、进水TN数据,在该表中查询所需设定的甲醇投加流量。操作人员每小时调整1次甲醇投加量,从而实现了甲醇投加量的人工精细化调控。进水TN以"NO-3-N+常数n"表示,其中NO-3-N由曝气滤池总出水的硝态氮仪表读取,"常数n"则根据出水在线监测数据校核或调整,一般相对稳定且为2左右。尽管反硝化所需的碳氮比是变化的,且随着TN去除量的降低而升高,但仍可通过调整"常数n"的取值,实现甲醇投加量的精细化调控。通过精细化调控,使得出水TN平均值由5 mg/L稳定提高至8 mg/L,节约了约3 mg/L TN所消耗的碳源。预计精细化调控可实现年均出水ρ(TN)提高2 mg/L,年节约25%(150万元)的甲醇药剂费,基本可达到与自动化精确加药相当的效果。该方法操作简单,具有一定的工程应用价值。Abstract: Consequences of uneconomical carbon source feeding and unstable total nitrogen in the effluent of denitrification bio-filter occur, due to great fluctuation of instantaneous inflow in an advanced wastewater treatment plant. A Guidance Table of Methanol Dosage was formulated according to the fact that actual denitrification C/N was around 7 through the historical methanol dosage and water quality data. Operators were able to query the required methanol dosing flow from this table according to the influent flow and total nitrogen data, then adjust the methanol dosage per hour in order to achieve the manual fine regulation. Influent total nitrogen was expressed as "nitrate nitrogen+constant n", which could be acquired by the nitrate meter at the total effluent of the biological aerated filter and adjustment of effluent quality online monitoring data, respectively. The value of Constant n was relatively stable at around 2. Although denitrification C/N was variable, especially increased with the decrease of total nitrogen removal, fine-regulation of methanol dosage could still be achieved by adjusting the value of constant n. Fine-regulation promoted the average total nitrogen of effluent from 5 mg/L to 8 mg/L, which could save carbon source equal to the consumption of 3 mg/L of total nitrogen, meanwhile increased the average annual effluent total nitrogen by 2 mg/L and save 1.5 million Yuan, 25% of the annual methanol cost, so as to basically achieve the equivalent effect of automatic and precise dosing. This method was simple and practical, and had certain engineering application value.
-
Key words:
- advanced treatment /
- denitrification bio-filter /
- fine-regulation /
- precise dosing
-
[1] 栗文明, 高敏, 周军, 等. 反硝化滤池污水处理工艺应用调研及设计要点[J]. 中国给水排水, 2020, 36(22): 100-105. [2] 李鹏飞, 蒋奇海, 张达飞, 等. 北京某大型再生水厂反硝化生物滤池运行管控实践[J]. 给水排水, 2021, 47(4): 39-44. [3] 尹亚云, 蒲文鹏, 陈永娟, 等. 污水处理厂化学除磷精确控制系统研究:以山东某污水处理厂为例[J]. 四川环境, 2021, 40(1): 228-332. [4] 郭钰锋, 马军, 于达仁, 等. 给水处理投药控制的非线性数学模型及仿真[J]. 哈尔滨工业大学学报, 2009, 41(5): 64-68. [5] 贺岩. 田村水厂加药精确控制研究[D]. 北京:北京工业大学, 2017. [6] 白桦, 李圭白. 混凝投药的神经网络控制方法[J]. 给水排水, 2001(11): 83-86. [7] 侯莹. 城市污水处理过程多目标优化控制方法及应用研究[D]. 北京:北京工业大学, 2018. [8] 王君伟. 水厂加药系统的优化控制[D]. 杭州:杭州电子科技大学, 2011. [9] 吴宇行, 王晓东, 陈宁, 等. 典型城镇污水处理厂碳源智能投加控制生产性试验研究[J]. 环境工程, 2022, 40(6): 212-218,271. [10] 杜胜利,张庆达,曹博琦,等.城市污水处理过程模型预测控制研究综述[J]. 信息与控制, 2022, 51(1): 41-53. [11] 彭正昌. 污水处理控制系统设计与控制策略优化研究[D]. 天津:天津工业大学, 2020. [12] 周圆, 支丽玲, 郑凯凯, 等. 城镇污水处理厂活性污泥反硝化速率的影响因素及优化运行研究[J]. 环境工程, 2020, 38(7): 100-108. [13] ÇOKGÖR E U, SÖZEN S, ORHON D, et al. Respirometric analysis of activated sludge behavior-Ⅰ. Assessment of the readily biodegradable substrate[J]. Water Research, 1998, 32(2): 461-475. [14] 刘发辉. 反硝化滤池在污水厂提标改造工程中的设计探讨[J]. 中国市政工程, 2020(4): 47-50,102.
点击查看大图
计量
- 文章访问数: 228
- HTML全文浏览量: 8
- PDF下载量: 26
- 被引次数: 0