LOW IMPACT DEVELOPMENT (LID) LAYOUT OPTIMIZATION FOR RAIL TRANSIT BASES
-
摘要: 近年来,极端天气发生频繁,城市化建设急速发展,由于强降雨导致的城市轨道交通内涝,给轨道交通正常运营带来极大的安全隐患,基于雨水管理的海绵城市建设对解决车辆基地径流问题具有重要作用。基于NSGA-Ⅱ构建以径流总量控制率、节点超载总时间和LID工程总成本为目标函数的LID优化布置算法,从模型角度优化LID措施的组合方案及规模,避免情景方案中人工枚举不全面的问题;并以上海市某车辆基地为研究区域,探究区域的LID布设方案。模拟结果表明:耦合SWMM和优化算法可生成一系列兼顾上述三目标的LID布设方案,有效削减了区域雨水径流总量和洪峰流量,提高区域排水能力,为车辆基地的LID方案设计提供技术支持。Abstract: With the frequent occurrence of extreme weather and the rapid implementation of urbanization construction, urban rail transit flooding due to heavy rainfall brings great safety risks to the normal operation of rail transit. The construction of sponge city based on rainwater management plays an important role in solving the vehicle base runoff problem. This paper constructs the LID optimization arrangement algorithm based on NSGA-Ⅱ with total runoff control rate, total node overload time and total LID engineering cost as the objective functions. The combination scheme and scale of LID measures are optimized from the model perspective to avoid the problem of incomplete manual enumeration in the scenario scheme. Finally, a train base in Shanghai is used as the study area to explore the regional LID deployment scheme. The simulation results show that the coupled SWMM and optimization algorithm can generate a series of LID deployment schemes that take into account the above three objectives, effectively reduce the total amount of regional stormwater runoff and flood flow, improve the regional drainage capacity, and provide technical support for the design of LID schemes for the vehicle base.
-
Key words:
- rail transit vehicle base /
- SWMM model /
- NSGA-Ⅱ /
- LID layout optimization /
- total node overload time
-
[1] 刘燕. 适用于城市轨道交通项目的海绵城市设施研究[D]. 深圳:深圳大学, 2019. [2] 柯忱. 轨道交通车辆基地给排水工程设计中存在的问题及对策研究[J]. 中国设备工程, 2021(24): 218-219. [3] 陈亮. 基于海绵城市理念的轨道交通车辆基地项目建设实践[J]. 中国水土保持, 2021(7): 31-33. [4] 杨正,李俊奇,王文亮,等. 对低影响开发与海绵城市的再认识[J]. 环境工程,2020,38(4):10-15,38. [5] 苗苑菁菁. 城市内涝灾害治理的典型LID措施优选问题研究[D]. 天津:天津大学, 2019. [6] 梅胜, 许明华, 周倩倩, 等. 排水管网改造与LID径流控制在城市雨洪管理中的应用和组合优化[J]. 水电能源科学, 2018, 36(3): 67-70. [7] 汪维, 王林森, 肖涛, 等. 基于雨水管网恢复力评估的LID设施优化布局[J]. 中国给水排水, 2019, 35(13): 112-116. [8] ECKART K, MCPHEE Z, BOLISETTI T. Multiobjective optimization of low impact development stormwater controls[J]. Journal of Hydrology, 2018,562:564-576. [9] 王晓雷, 潘健英, 吴凌壹, 等. 海绵城市理念在城市轨道交通建设中的应用研究:深圳地铁长圳车辆段工程实例[J]. 现代城市轨道交通, 2020(12): 149-154. [10] JORGE GIRONÁS, ROESNER L A, ROSSMAN L A, et al. A new applications manual for the Storm Water Management Model (SWMM)[J]. Environmental Modelling & Software, 2010, 25(6):813-814. [11] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. [12] 常晓栋, 徐宗学, 赵刚, 等. 基于SWMM模型的城市雨洪模拟与LID效果评价:以北京市清河流域为例[J]. 水力发电学报, 2016, 35(11): 84-93. [13] 上海市住房城乡建设管理委员会. 上海市海绵城市建设工程投资估算指标[Z]. 上海: 2018.
点击查看大图
计量
- 文章访问数: 104
- HTML全文浏览量: 10
- PDF下载量: 2
- 被引次数: 0