CHARACTERISTICS IDENTIFICATION AND HEALTH RISK ASSESSMENT OF MERCURY CONTAMINATED SITES
-
摘要: 汞污染场地特征识别与风险管控是《关于汞的水俣公约》中重要的履约计划。围绕当前我国场地尺度汞污染特征不清、风险管理模式不健全的问题,深入研究了人为活动汞的物质流向与管控行业场地潜在的污染途径,系统分析了当前场地尺度汞的主要来源、赋存形态、空间迁移与形态转化,并以原生汞矿选冶矿山作为典型汞污染场地,构建了场地概念模型并对风险评价与分类管控对策进行研究。结果表明:我国汞污染场地多存在于原矿开采、汞触媒、氯碱、聚氯乙烯(polyvinyl chloride,PVC)、废物处置等有意汞排放行业,以及燃煤电厂、有色金属、水泥生产等无意汞排放行业。场地中的汞以无机和有机复杂形态赋存,并可发生介质间迁移与形态间的转化,对场地风险的精准评估形成挑战。汞污染场地潜在暴露情景的场地概念模型表明:汞可通过经口、呼吸、饮水、饮食等多途径进入人体并形成不可接受的健康风险。根据国外场地风险评价理论与管理实践,并结合我国的实际情况,提出基于汞生物化学转化过程的精准风险评价与风险优先级相适应的分类修复/风险管控,以期成为一种科学规范、环境友好、可持续的汞污染场地风险管理对策。最后对汞污染场地风险评价方法与管控对策研究的发展方向作出展望。Abstract: Characteristic identification and risk management of mercury-contaminated sites are an important implementation plan of the Minamata Convention on Mercury(the Convention). Focusing on the scientific problems regarding unclear characteristics of site-scale mercury pollution and inadequate risk management system, life-cycle Hg flow along with potential contamination pathways within different anthropogenic activities were studied systematically. Site characteristics, consisting of sources, emission, transport and transformation, were discussed on a typical Hg-contaminated site from Hg ore mining and smelting, where a conceptual site model was constructed and systematic management strategies were studied. Research results showed that mercury-contaminated sites were related to intentional discharge activities, including ore mining, mercury catalysts, Chlor-alkali, polyvinyl chloride, treatment of Hg-containing waste, etc., and unintentional discharge activities, including coal-fired power plants, non-ferrous metal smelting, cement production. Inorganic and organic mercury species at a site scale undergone the biogeochemistry cycling of spatial migration and specie transformations, which were required to be considered in further risk assessment. Meanwhile, a conceptual site model (CSM) was established based on the exposure scenario of a typical mercury-contaminated site. It indicated that mercury posed health risks to the human body via various exposure routes, including oral ingestion, inhalation, water drinking, and food intake. Sophisticated risk assessment methods and feasible risk control strategies were discussed based on the practical experiences of the developed countries and actual situation of China. It was concluded that accurate risk assessment based on the mercury biochemical transformation process and risk priority-based classified restoration/risk management might become a scientific, standardized, environmentally friendly and sustainable risk management for mercury-contaminated sites. This work provided a significant basis for site classification and management strategy, which might improve the fulfillment capacity towards the Convention. Finally, the development trend and outlook in risk management of mercury-contaminated sites were also discussed.
-
Key words:
- mercury /
- contaminated site /
- conceptual site model /
- risk control /
- site management
-
[1] 姜林, 钟茂生, 张丽娜, 等. 基于风险的中国污染场地管理体系研究[J]. 环境污染与防治, 2014, 36(8): 1-10. [2] FENG X B, LI P, QIU G L, et al. Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China[J]. Environment Science & Technology, 2008, 42(1): 326-332. [3] GOVERNMENT OF CANADA. Mercury: regulations and other management tools, risk Management Strategy for Mercury. Canada2010. [4] TRASANDE L, LANDRIGAN P J, SCHECHTER C. Public health and economic consequences of methyl mercury toxicity to the developing brain[J]. Environmental Health Perspectives, 2005, 113(5): 590-596. [5] 陈卫平, 谢天, 李笑诺, 等. 欧美发达国家场地土壤污染防治技术体系概述[J]. 土壤学报, 2018, 55(3): 527-542. [6] 姜林, 樊艳玲, 钟茂生, 等. 我国污染场地管理技术标准体系探讨[J]. 环境保护, 2017, 45(9): 38-43. [7] CAIN A, DISCH S, TWAROSKI C, et al. Substance flow analysis of mercury intentionally used in products in the united states[J]. Journal of Industrial Ecology, 2008, 11(3): 61-75. [8] LIN Y, WANG S X, WU Q R, et al. Material flow for the intentional use of mercury in China[J]. Environmental Science & Technology, 2016, 50(5): 2337-2344. [9] 吴清茹. 中国有色金属冶炼行业汞排放特征及减排潜力研究[D]. 北京: 清华大学, 2015. [10] 周瑞, 林青, 于跃, 等. 我国原生汞生产行业典型企业Hg的污染排放特征[J]. 环境科学研究, 2016, 29(5): 664-671. [11] MACH V, SKALSKY M, PETRLIK J, et al. Chemical plants as a significant soure of mercury contamination in the central and eastern European region, 2nd edition[J]. International Pollutants Elimination Network, Sweden, 2016. [12] LABUNSKA I, BRIGDEN K, SANTILLO D, et al. The nováky chemical plant (Novácke chemické závody) as a source of mercury and organochlorine contaminants to the Nitra River, Slovakia[R]. University of Exeter, Exeter, UK, 2002. [13] HIGUERAS P, OYARZUN R, LILLO J, et al. The Almadén district (Spain): anatomy of one of the world’s largest Hg-contaminated sites[J]. Science of the Total Environment, 2006, 356(1): 112-124. [14] HEAVEN S, ILYUSHCHENKO M A, TANTON T W, et al. Mercury in the River Nura and its floodplain, Central Kazakhstan: Ⅰ. River sediments and water[J]. Science of the Total Environment, 2000, 260(1): 35-44. [15] THE WORLD BANK. Implementation completion and results report (Ibrd-46930) an a loan in the amount of US$ 40.39 million to the government of Kazakhstan for the Nura River clean-up project[R]. Europe and Central Asia Region; 2013. [16] 仇广乐. 贵州省典型汞矿地区汞的环境地球化学研究[D]. 贵阳: 中国科学院研究生院(地球化学研究所), 2005. [17] QIU G L, FENG X B, WANG S F, et al. Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China[J]. Applied Geochemistry, 2005, 20(3): 627-638. [18] HUI M L, WU Q R, WANG S X, et al. Mercury flows in China and global drivers[J]. Environmental Science & Technology, 2016, 51(1): 222-231. [19] 赵彬, 易红宏, 唐晓龙, 等. 燃煤烟气汞形态转化及脱除技术[J]. 现代化工, 2015, 35(1): 58-62. [20] WANG J X, FENG X B, ANDERSON C W N, et al. Remediation of mercury contaminated sites: a review[J]. Journal of Hazardous Materials, 2012, 221/222: 1-18. [21] RUMAYOR M, GALLEGO J R, RODRIGUEZ-VALDES E, et al. An assessment of the environmental fate of mercury species in highly polluted brownfields by means of thermal desorption[J]. Journal of Hazardous Materials, 2017, 325: 1-7. [22] 李宝磊, 邵春岩, 陈刚, 等. 铜铅锌冶炼行业典型含汞废物处置技术与对策[J]. 环境工程, 2018, 36(8): 134-137. [23] ZHAO B, YI H H, TANG X L, et al. Copper modified activated coke for mercury removal from coal-fired flue gas[J]. Chemical Engineering Journal, 2016, 286: 585-593. [24] HE F, GAO J, PIERCE E, et al. In situ remediation technologies for mercury-contaminated soil[J]. Environmental Science and Pollution Research, 2015, 22(11): 8124-8147. [25] O’CONNOR D, HOU D Y, OK Y S, et al. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: a critical review[J]. Environment International, 2019, 126: 747-761. [26] WANG D Y, SHI X J, WEI S Q. Accumulation and transformation of atmospheric mercury in soil[J]. Science of the Total Environment, 2003, 304(1/2/3): 209-214. [27] GABRIEL M C, WILLIAMSON D G. Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment[J]. Environmental Geochemistry and Health, 2004, 26(3): 421-434. [28] WANG J X, SHAHEEN S M, SWERTZ A C, et al. Sulfur-modified organoclay promotes plant uptake and affects geochemical fractionation of mercury in a polluted floodplain soil[J]. Journal of Hazardous Materials, 2019, 371: 687-693. [29] MAHBUB K R, BAHAR M M, LABBATE M, et al. Bioremediation of mercury: not properly exploited in contaminated soils![J]. Applied Microbiology and Biotechnology, 2017, 101(3): 963-976. [30] HSU-KIM H, ECKLEY C S, ACHÁ D, et al. Challenges and opportunities for managing aquatic mercury pollution in altered landscapes[J]. Ambio, 2018, 47(2): 141-169. [31] 贾威, 陈金全, 常军军. 汞污染生物修复研究进展[J]. 环境工程, 2020, 38(5): 171-178. [32] CHRISTENSEN G A, GIONFRIDDO C M, KING A J, et al. Determining the reliability of measuring mercury cycling gene abundance with correlations with mercury and methylmercury concentrations[J]. 2019, 53(15): 8649-8663. [33] 孟其义, 钱晓莉, 陈淼, 等. 稻田生态系统汞的生物地球化学研究进展[J]. 生态学杂志, 2018, 37(5): 1556-1573. [34] HORVAT M, NOLDE N, FAJON V, et al. Total mercury, methylmercury and selenium in mercury polluted areas in the province Guizhou, China[J]. Science of the Total Environment, 2003, 304(1): 231-256. [35] STEIN E D, COHEN Y, WINER A M. Environmental distribution and transformation of mercury compounds[J]. Critical Reviews in Environmental Science and Technology, 1996, 26(1): 1-43. [36] LI P, FENG X B, SHANG L H, et al. Mercury pollution from artisanal mercury mining in Tongren, Guizhou, China[J]. Applied Geochemistry, 2008, 23(8): 2055-2064. [37] CAMPOS J A, ESBRí J M, MADRID M M, et al. Does mercury presence in soils promote their microbial activity? The Almadenejos case (Almadén mercury mining district, Spain)[J]. Chemosphere, 2018, 201: 799-806. [38] 朱小龙, 卢再亮, 魏小芳, 等. 体温计生产企业场地汞污染特征及健康风险评价[J]. 地球环境学报, 2014,5(4): 277-281,291. [39] 孙婷, 李秋华, 唐黎, 等. 贵阳市百花水库消落带土壤汞形态分布及风险评价[J]. 生态环境学报, 2019, 28(4): 831-839. [40] 沈路路, 胡建英, 董兆敏, 等. 中国部分地区汞暴露对儿童健康风险评价[J]. 中国环境科学, 2009, 29(12): 1323-1326. [41] 郑顺安, 唐杰伟, 郑宏艳, 等. 污灌区稻田汞污染特征及健康风险评价[J]. 中国环境科学, 2015, 35(9): 2729-2736. [42] 王芳. 我国土壤环境与污染修复发展策略[J]. 环境工程, 2022, 40(7): 34. [43] 姜林, 梁竞, 钟茂生, 等. 复杂污染场地的风险管理挑战及应对[J]. 环境科学研究, 2021, 34(2): 458-467. [44] 梁刚. 论污染土壤修复在环境治理中的作用[J]. 环境工程, 2021, 39(4): 38. [45] 张永祥, 王晋昊, 井琦, 等. 地下水修复中纳米零价铁材料制备及应用综述[J]. 化工进展, 2021, 40(8): 4486-4496. [46] 刘钊钊, 唐浩, 吴健, 等. 土壤汞污染及其修复技术研究进展[J]. 环境工程, 2013, 31(5): 80-84,109. [47] 余高, 陈芬, 赵成刚, 等. 高分子聚合物与钝化剂复配对汞污染土壤钝化修复研究[J]. 环境工程, 2021, 39(4): 174-179,186. [48] THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Engineering Bulletin: Thermal Desorption Treatment[R].1991. [49] THE UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Superfund Remedy Report Fourteenth Edition (EPA-542-R-13-016)[R]. 2013.
点击查看大图
计量
- 文章访问数: 188
- HTML全文浏览量: 26
- PDF下载量: 14
- 被引次数: 0