REVIEW OF TREATMENT AND CONDITIONING OF SPENT RADIOACTIVE RESIN
-
摘要: 放射性废树脂的安全处理与处置是影响核能健康、可持续发展的重要因素之一。综述了国际上放射性废树脂处理与整备技术,如水泥固化、化学氧化、焚烧、超临界水氧化、超压处理等,从基本原理、技术特点、二次废物、减容比和应用现状等方面进行了比较分析,明确了当前处理与整备技术的发展理念是实现"废物最小化"和废物处置长期稳定性。其中超临界水氧化、蒸汽重整、冷坩埚等新技术是未来的发展方向。分别指出了其所面临的问题和研究重点。最后,结合实际需要,提出了我国放射性废树脂处理与整备技术的发展思路和重点研究方向。Abstract: Safe treatment and disposal of radioactive spent resin is an important issue for health and sustainable development of the nuclear energy industry. This article reviewed systematically the main treatment and conditioning technologies of radioactive spent resin, including cement solidification, chemical oxidation, incineration, supercritical water oxidation, supercompaction, etc. The basic principle, technological process, technical features, secondary waste, reduction ratio and application of various technologies were compared. The new technologies such as supercritical water oxidation (SCWO), steam reformation and cold crucible were discussed. Indicated waste resin treatment development ideas were "waste minimization" and long-term safe disposal. SCWO, steam reformation, cold crucible and other new treatment technologies were development direction. These special technique challenges and research emphases were described and proposed, respectively. Finally, combing with the need of China’s nuclear development, radioactive waste resin treatment and conditioning technology research and development suggestions were actually provided.
-
[1] 李洪辉,杨仲田,杨卫兵,等. 废树脂水泥固化体辐解气体测定[J]. 辐射研究与辐射工艺学报,2012,30(6):370-373. [2] 逯馨华,张红见,魏方欣,等. 核电厂放射性废树脂处理技术对比研究[J]. 核安全,2017,16(3):55-61. [3] 罗上庚. 废离子交换树脂的优化处理[J]. 核科学与工程,2003,23(2):165-172. [4] 中国核能行业协会. 全国核电运行情况(2021年1—12月)[EB/OL]. http://www.china-nea.cn/site/comtent/39991.html, 2022-1-27. [5] International Atomic Energy Agency. Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers[R]. Vienna: IAEA, 2002. [6] 顾忠茂. 核废物处理技术[M]. 北京:原子能出版社,2009. [7] 李俊峰,周耀中,王建龙,等. 放射性废离子交换树脂特种水泥固化体的微观结构分析[J]. 核科学与工程,2004,24(4):340-343. [8] 夏丽丽,林美琼,包良进,等. 聚合物水泥固化放射性废树脂配方的研究[J]. 核化学与放射化学,2006,28(3):163-168. [9] 付玉龙,李玉香,李继坪,等. 聚丙烯纤维对废树脂水泥固化体性能的影响[J]. 辐射防护,2017,37(1):34-38. [10] 黄来喜,何文新,陈德淦. 大亚湾核电站放射性固体废物管理[J]. 辐射防护,2004,24(3):211-226. [11] 刘丽君,张生栋. 放射性废物冷坩埚玻璃固化技术发展分析[J]. 原子能科学技术,2015,49(4):589-596. [12] 杨丽莉. 俄罗斯冷坩埚技术及其应用[J]. 广州化工,2016,43(18):106-107. [13] 杨丽莉, 李晓海,徐卫. 冷坩埚玻璃固化技术及应用[J]. 辐射防护通讯,2013,33(3):37-41. [14] FOURINER M, ROUSSET F. Incineration-verification of a mixture of zeolites, diatoms and ion exchange resins using the SHIVA process[J].IOP Conference Series: Materials Science and Engineering, 2020, 818(1):012015. [15] 李玉松,张生栋,鲜亮,等. 高放废液玻璃固化技术研发进展[J]. 原子能科学技术,2020,54(增刊):126-136. [16] GIESSMANN C. Microwave in-drum drying[J]. Radwaste Solutions, 2007, 12(1):68-72. [17] SCHULZ R L, WICKS G G, FOLZ D C, et al. Overview of hybrid microwave technology[J]. Journal of the South Carolina Academy of Science, 2011, 9(1):25-29. [18] 高超,安鸿翔,贾梅兰. 放射性废树脂微波桶内干燥工艺研究[J]. 真空电子技术,2016(6):54-56. [19] 高超,贾梅兰,高帅. 200L规模废树脂微波桶内干燥装置设计验证[J]. 辐射防护通讯,2016(36):23-26. [20] 柳兆峰,闫晓俊,梁栋,等. 废树脂干燥装置研究[J]. 辐射防护,2016,36(3):173-178. [21] SZUKALA M, MUNTZEL W, GRUNDKE E, et a1. Treatment of spent ion-exchange resin in the nuclear power plant PhilIppsburg[C]//ICEM’ 95, Germany, 1995. [22] JOHAN H, BREAT R, CHARPENTIER K, et al. Radioactive spent ion-exchange resins conditioning by the hot super compaction process at Tihange NPP-Early Experience[C]//WM’2012 Conference, Tucson, 2012. [23] BAUDOUI C, DAVID C. Spent resins hot compaction at Tihange NPP[C]//Proceedings of 17th International Conference on Nuclear Engineering, Brussels, 2009. [24] 周焱,张海峰. 核电站低中废树脂热态超压处理技术应用探讨[J]. 原子能科学技术,2012,46(增刊1):142-146. [25] JOSEPHSON W S. High integrity container evaluation for solid waste disposal burial container[R]. Richland: Westinghouse Hanford Company, 1996. [26] CHOI J R, HA J H. Modification of spent filter treat method at Uljin Nuclerar Power Plant[C]//99th International Symposium on Radiation Safety Management,Korea, 1999. [27] KWAK S S. Evaluation of radiation safety for storage of high integrity container in Yonggwang NPP[C]//99th International Symposium on Radiation Safety Management,Korea, 1999. [28] 裴勇,潘跃龙. 高整体容器在我国放射性废物管理中的应用分析[J]. 核动力工程,2012,33(3):125-128. [29] 郑博文,唐灿,杨丽莉,等. 放射性废物焚烧技术的发展历程和展望[J]. 辐射防护,2020,40(5):379-386. [30] DUBOIS M A, DOZOL J F, NICOTRA C, et al. Pyrolysis and incineration of cationic and anionic ion-exchange resins-identification of volatile degradation compounds[J]. Journal of Analytical and Applied Pyrolysis, 1995, 31:129-140. [31] KORPIOLA K, JARAVINEN J, PENTTILA K, et al. Modeling of incineration of spent ion exchange resins of boiling water and pressurized water nuclear reactors[J].Nuclear Technology, 2010, 172:230-236. [32] 林力,马兴均,陈先林,等. 放射性废物蒸汽重整处理及矿化技术发展现状及展望[J].科技创新导报,2015(18):6-10. [33] VOELKER G E, STEEDMAN W G, CHANDRAN R R. Steam reforming of low-level mixed waste[R]. West Virginia: Morgantown Energy Technology Center, 1996. [34] 林力,章航洲,李文钰,等. 基于吉布斯自由能最小原理的废树脂蒸汽重整平衡产物分析[J]. 四川环境,2020,39(5):170-174. [35] 林力,章航洲,李文钰,等. 基于流体体积模型的放射性废树脂蒸汽重整流态化数值模拟分析[J]. 科学技术与工程,2020,20(30): 12657-12663. [36] 林力,陈先林,李文钰,等. 放射性废物蒸汽重整垂直管内流场反应耦合数值模拟研究[J]. 科学技术与工程,2016,16(4): 200-204. [37] 杨勇. 废树脂裂解流化床中多组分颗粒的分散与混合[D]. 杭州:浙江大学,2021. [38] 宋琦. 放射性废树脂流化裂解和核素矿化包容技术研究[D]. 杭州:浙江大学,2021. [39] 薛海龙,闫晓俊,冯文东,等.放射性废树脂无机化减容处理技术[J]. 当代化工,2020,49(9):1934-2087. [40] 张禹,阮佳晟,郑博文,等. 蒸汽重蒸反应器调研与分析[J]. 辐射防护通讯,2019,39(4):39-48. [41] 李斗,华伟,廖能斌,等. 蒸汽重整处理核电厂放射性废树脂的探讨[J]. 广州化工,2015,43(15):157-158. [42] POLKANOV M, GORBUNOV V. Technology of plasma treating radioactive waste: the step forward in comparison with Incineration[C]//WM2010 Conference,Phoenix (AZ), 2010. [43] NEZU A, MORISHIMA T, WATANABE T. Thermal plasma treatment of waste ion-exchange resins doped with metals[J].Thin Solid Films, 2003, 435:335-339. [44] CASTRO H A, RODRIGUEZ R A, LUCA V, et al. Pyrolysis and high performance plasma treatment applied to spent ion exchange resins[J].Journal of Nuclear Engineering and Radiation Science, 2019, 5(2):020901. [45] 程昌明,童洪辉,兰伟,等. 模拟放射性废树脂热等离子体处理系统设计及试验分析[J]. 高电压技术,2013,39(7): 1584-1589. [46] 陈思邈,程昌明,李平川,等. 等离子体熔融技术在核电站放射性废物处理中的研究应用现状[J/OL]. https://doi.org/10.13922/j.cnki.cjvst.202202017,2022-2-17. [47] 徐文兵,吕永红,陈明周,等. 热等离子体处理模拟放射性废物试验研究[J]. 核动力工程,2015,36(6):175-179. [48] 郑伟,王朝晖,林鹏,等. 核电站低放废物集中减容处理技术探讨[J]. 辐射防护,2021,41(4):295-301. [49] 王兰,陈顺彰,侯晨曦,等. 等离子体技术处理放射性废物的研究进展[J]. 材料导报,2016(30):116-120. [50] 潘跃龙,刘夏杰,喻翠云. 放射性废物减容与减害技术研究[J]. 中国基础科学,2021(4): 41-51. [51] 杜长明,蔡晓伟,余振棠,等. 热等离子体处理危险废物近零排放技术[J]. 高电压技术,2019,45(9):2999-3012. [52] COOPER J F, BALAZS G B, LEWIS P, et al. Applications of direct chemical oxidation to demilitarization[R]. California: Lawrence Livermore National Laboratory, 1998. [53] COOPER J F, WANF F T, KRUEGER R, et al. Destruction of organic wastes by ammonium peroxydisulfate with electrolytic regeneration of the oxidant[R]. Singapore: Lawrence Livermore National Laboratory, 1997. [54] PIERCE R A, LIVINGSTON R, BURGE D A, et al. Wet chemical oxidation and stabilization of mixed and low level organic wastes[R]. Tucson: Westinghouse Savannah River Company, 1998. [55] MIYAMOTO T, MOTOYAMA M, SHIBUYA M, et al. Development of wet-oxidation treatment system for filter backwash sludge and ion exchange resins[C]//WM’03 Conference, Tucson, 2003. [56] 李庆瑞. 核二厂低放射性废弃物管理成效与精进简报[C]//2011年两岸核电管理研讨会, 北京, 2011. [57] 陈义平,田景光,罗任瀚,等. 湿式氧化暨高效率固化系统之建置[C]//第三届两岸放射性废物管理研讨会会议论文集, 成都, 2013. [58] YE Y C, YU S N. Stabilization and volume reduction of radioactive spent ion exchange resins[J]. Nuclear Science and Techniques, 2006, 12(1):68-72. [59] 贾少青,冯文东,李小龙,等. 过氧化氢湿法氧化IRN78阴离子交换树脂的初步研究[J]. 辐射防护,2017,37(3):193-199. [60] 郭喜良,冯文东,高超,等. 废树脂湿法氧化减容处理技术路线及问题探讨[J]. 辐射防护,2015,35(5):267-273. [61] LAURIE J A. Demonstration of silver for the decontamination and destruction of organics in Transuranic wastes[R]. Tissues: AEA, 2001. [62] SINGH G S, BANERJEE D, SRINIVAS C. Ag (Ⅱ)-mediated electrochemical oxidation technique for organic radioactive waste treatment and analytical applications[J]. SN Applied Sciences, 2020, 12(2):1-13. [63] XING H Q, MA H, ZHANG Z T, et al. Destruction of Resin by Ag(Ⅱ) Mediated Electrochemical Oxidation[R]. Annual Report of China Institute of Atomic Energy, 2009: 327. [64] 刘志辉. 银媒介电化学氧化处理有机废物的初步研究[J]. 辐射防护,2008,28(4):208-213. [65] 李锋,汪海峰,朱丹. 超临界水氧化技术的研究与应用进展[J]. 上海电力学院学报,2002,18(1):17-22. [66] ZHANG D D, STEF G, FREDRIK R. Effluent recirculation enables near-complete oxidation of organics during supercritical water oxidation at mild conditions: a proof of principle[J]. Chemosphere, 2020, 250:1-11. [67] SAKO T, SUGETA T, OTAKE K, et al. Decomposition of dioxins in fly ash with supercritical water oxidation.[J]. Journal of Chemical Engineering of Japan, 1997, 30(4):744-747. [68] JOHNSTON J B, HANNAH R E, CUNNINGHAM V L, et al. Destruction of pharmaceutical and biopharmaceutical wastes by the MODAR supercritical water oxidation process[J]. Biotechnology, 1988, 6:1423-1427. [69] GLANZ G. New waste-destruction method takes aim at world’s sludge[J].R& D Magazine, 1992, 34:98-100. [70] SHAW RW, DAHMEN N. Destruction of toxic organic materials using supercritical water[M]. Netherlands: Kluwer Academic, 2000. [71] LIMOUSIN G, JOUSSOT C D, PERR C, et al. Hydrothermal oxidation of contaminated organic wastes, application to a simulated waste: mixture of dodecane and tributyphosphate[C]//Nuclear Fuel Reprocessing and Waste Management Conference, Tokyo, 1998. [72] LEYBROS A, ROUBAUD A, GUICHARDONB P, et al. Ion exchange resins destruction in a stirred supercritical water oxidation reactor[J]. J of Supercritical Fluids, 2010, 51: 369-375. [73] AKAI Y, YAMADA K, SAKO T. Ion-exchange resin decomposition in supercritical water[J]. High Pressure Res, 2001, 20:515-524. [74] AKAI Y, OHMURA H, YAMADA K, et al. Development of radioactive waste treatment system using supercritical water[C]//WM’05 Conference, Tucson, 2005. [75] KIM K, SON S H, KIM K S, et al. Treatment of radioactive ionic exchange resins by super-and sub-critical water oxidation (SCWO)[J]. Nuclear Engineering and Design, 2010, 240:3654-3659. [76] LEYBROS A, ROUBAUD A, GUICHARDON P, et al. Supercritical water oxidation of ion exchange resins: degradation mechanisms[J]. Process Safety and Environmental Protection, 2010, 88:213-222. [77] VIOLETA V, JEZABEL S O, JUAN R P, et al. Problems in supercritical water oxidation process and proposed solutions[J]. Ind Eng Chem Res, 2013, 52(23):7617-7629. [78] 马承愚,姜安玺,彭英利,等. 含氯介质超临界水氧化过程中几种镍基合金腐蚀的实验研究[J]. 过程工程学报,2006,6(1):124-127. [79] 李腾,包良进,鲜亮,等. 超临界水氧化处理放射性废TBP/煤油技术研究[J]. 原子能科学技术,2021,55(4):594-602. [80] HIGASHIA H, IWAIB Y, MATSUMOTO K, et al. Measurement and correlation for solubilities of alkali metal chlorides in water vapor at high temperature and pressure[J]. Fluid Phase Equilib, 2005, 228:547-551. [81] SHIN H Y, MATSUMOTO K, HIGASHI H, et al. Development of a solution model to correlate solubilities of inorganic compounds in water vapor under high temperatures and pressures[J]. Journal of Supercritical Fluids, 2001, 21:105-110. [82] COCERO M J, ALONSO E, VALLELADO D, et al. Optimization of operational variables of a supercritical water oxidation SCWO process[J]. Water Sci Technol, 2000, 42:107-113. [83] COCERO M J. High pressure process technology: fundamentals and applications[M]. Amsterdam: Elsevier, 2001. [84] BERMEJO MD, FDEZ F, COCERO M J. Effect of the transpiring wall on the behavior of a supercritical water oxidation reactor: modeling and experimental results[J]. Ind Eng Chem Res, 2006, 45(10):3438-3446. [85] ABEN J, KLUTH M, BOTTCHER M, et al. Supercritical water oxidation (SCWO) using a transpiring wall reactor: CFD simulations and experimental results of ethanol oxidation[J]. Environmental Engineering Science, 2004, 21:93-99. [86] FAUVEL E, JOUSSSOT D C, GUICHARDON P, et al. A double-wall reactor for hydrothermal oxidation with supercritical water flow across the inner porous tube[J]. Journal of Supercritical Fluids, 2004, 28:47-56. [87] LEE H C, IN J H, LEE S Y, et al. An anti-corrosive reactor for the decomposition of halogenated hydrocarbons with supercritical water oxidation[J]. Journal of Supercritical Fluids, 2005, 36:59-69. [88] CALZAVARA Y, JOUSSSOT D C, TURC H, et al. A new reactor concept for hydrothermal oxidation[J]. Journal of Supercritical Fluids, 2004, 31:195-206. [89] 袁誉坤,尹宇发宁,舒睿. 超临界水氧化处理核电厂去油污溶剂及反应动力学分析[J]. 核化学与放射化学,2020,42(3):192-197. [90] 李风风,王四芳. 超临界水氧化技术在核废物处理领域的应用[J]. 设计计算,2020,194(2):22-25. [91] WANG L, YI L, WANG G Y, et al. Experimental investigation on gasification of cationic ion exchange resin used in nuclear power plants by supercritical water[J]. Journal of Hazardous Materials, 2021, 419: 126437. [92] 兰树仁,柴涛,刘雯雯,等. 催化超临界水氧化技术处理核电站废阴离子交换树脂的研究[J]. 精细化工中间体,2019,49(5): 54-58. [93] 韩一丹,张生栋,鄢枭,等. 放射性废物处理与整备关键技术研究进展[J]. 原子能科学技术,2020,55(增刊1): 137-142. [94] 张振涛,陈艳,刘刈,等. 超临界水氧化系统[P]. 中国专利:CN201910108862.9,2019. [95] HUANG Y J, WANG H P, LI C T, et al. Minimization of cobalt nuclide emissions in supercritical water oxidation of spent resin[J]. Chemosphere, 2000, 40: 347-349. [96] 陈忠,王光伟,陈鸿珍,等. 气封壁高浓度有机污染物超临界水氧化处理系统[J].环境工程学报,2014,8(9):3825-3831. [97] CHEN Z, WANG G W, YIN F J, et al. A new system design for supercritical water oxidation[J]. Chemical Engineering Journal, 2015, 269: 343-351.
点击查看大图
计量
- 文章访问数: 378
- HTML全文浏览量: 34
- PDF下载量: 19
- 被引次数: 0