CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高温热水解对不同含固率低有机质污泥溶出规律影响

江丽华 卓桂华 何雨恒 杨淑贵 林鸿 郑育毅

江丽华, 卓桂华, 何雨恒, 杨淑贵, 林鸿, 郑育毅. 高温热水解对不同含固率低有机质污泥溶出规律影响[J]. 环境工程, 2023, 41(5): 1-7,38. doi: 10.13205/j.hjgc.202305001
引用本文: 江丽华, 卓桂华, 何雨恒, 杨淑贵, 林鸿, 郑育毅. 高温热水解对不同含固率低有机质污泥溶出规律影响[J]. 环境工程, 2023, 41(5): 1-7,38. doi: 10.13205/j.hjgc.202305001
JIANG Lihua, ZHUO Guihua, HE Yuheng, YANG Shugui, LIN Hong, ZHENG Yuyi. INFLUENCE OF THERMOPHILIC HYDROLYSIS PRETREATMENT ON PHYSICOCHEMICAL PROPERTIES OF SOLUBILIZATION FROM LOW-ORGANIC-MATTER SLUDGE WITH DIFFERENT SOILD CONTENTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 1-7,38. doi: 10.13205/j.hjgc.202305001
Citation: JIANG Lihua, ZHUO Guihua, HE Yuheng, YANG Shugui, LIN Hong, ZHENG Yuyi. INFLUENCE OF THERMOPHILIC HYDROLYSIS PRETREATMENT ON PHYSICOCHEMICAL PROPERTIES OF SOLUBILIZATION FROM LOW-ORGANIC-MATTER SLUDGE WITH DIFFERENT SOILD CONTENTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 1-7,38. doi: 10.13205/j.hjgc.202305001

高温热水解对不同含固率低有机质污泥溶出规律影响

doi: 10.13205/j.hjgc.202305001
基金项目: 

福建省科技厅对外合作项目(2021I0010)

福建省科技厅公益类项目(2019R1015-1)

福建省科技厅计划项目(2020N5015)

详细信息
    作者简介:

    江丽华(1997-),女,硕士研究生,主要研究方向为固废资源化利用。1375693428@qq.com

    通讯作者:

    郑育毅(1974-),男,博士研究生,教授级高工,主要研究方向为固废资源化利用。yuyi_1974@sina.com

INFLUENCE OF THERMOPHILIC HYDROLYSIS PRETREATMENT ON PHYSICOCHEMICAL PROPERTIES OF SOLUBILIZATION FROM LOW-ORGANIC-MATTER SLUDGE WITH DIFFERENT SOILD CONTENTS

  • 摘要: 高温热水解是促进低有机质污泥厌氧水解过程的有效方法,探讨不同含固率下低有机质污泥高温热水解后物质溶出规律,可为实现其高效厌氧发酵提供基础理论依据。通过序批式实验和相关性分析研究了含固率、温度和时间对高温热水解污泥中物质溶出的影响。结果表明:污泥中物质溶出特性与温度、含固率的相关性均较高(P=0.272~0.757,0.249~0.774)。除含固率6%的污泥外,8%、10%及12%含固率污泥中可溶糖、可溶蛋白质、总挥发性脂肪酸(TVFA)、溶解性有机碳(SOC)浓度随处理温度提高而增大,而pH则相反。除含固率的8%污泥外,氨氮(NH4+-N)和游离氨(FAN)浓度亦随含固率、热水解温度的提高而增大。当处理温度相同时,可溶糖、可溶蛋白质、TVFA、SOC、NH4+-N、FAN浓度总体上随含固率的升高而升高,而含固率变化对pH无显著影响。同时,含固率6%~10%的污泥中可溶蛋白质的溶出率高于可溶糖,随着含固率的增加,可溶蛋白质溶出率增幅有所降低;含固率为6%和12%时,TVFA增加不明显;SOC与SCOD的变化规律一致,主要取决于可溶蛋白质溶出浓度的变化。
  • [1] ZHANG H, TAO W, HOU M, et al. Effect of potassium ferrate as a dewatering conditioner on sludge pyrolysis characteristics and the releasing characteristics of nitrogen, sulfur, and chlorine during sewage sludge pyrolysis[J]. Processes, 2023, 11(3): 920
    [2] KHANH NGUYEN V, CHAUDHARY D K, Dahal R H, et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge[J]. Fuel, 2021, 285:119105.
    [3] CHEN H, YI H, LI H, et al. Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: performance, energy balance and, enhancement mechanism[J]. Renewable Energy, 2020, 147: 2409-2416.
    [4] 薛勇刚. 热水解温度和时间对污泥有机物溶出的影响[J]. 净水技术, 2019, 38(增刊1): 143-146.
    [5] TOUTIAN V, BARJENBRUCH M, UNGER T, et al. Effect of temperature on biogas yield increase and formation of refractory COD during thermal hydrolysis of waste activated sludge[J]. Water Research, 2020, 171:115383.
    [6] SONG H, HAN S K, KIM C, et al. A Study on the Viscosity Characteristics of Dewatered Sewage Sludge according to Thermal Hydrolysis Reaction[J]. Jornal of Korea Organic Resource Recycling Association, 2014, 22(1): 27-34.
    [7] CAO X, PAN Y, JIANG K, et al. Effect of high-temperature thermal hydrolysis on rheological properties and dewaterability of sludge[J]. Environmental Technology, 2021, 42(23): 3707-3715.
    [8] 刘文静. 高温热水解预处理对污泥脱水性能影响的中试试验[J]. 净水技术, 2019, 38(增刊2): 36-39.
    [9] YANG D, DAI X, SONG L, et al. Effects of stepwise thermal hydrolysis and solid-liquid separation on three different sludge organic matter solubilization and biodegradability[J]. Bioresource Technology, 2019, 290:121753.
    [10] 韩芸, 卓杨, 彭党聪, 等. 不同含固率污泥热水解后厌氧消化特性及有机物转化[J]. 中国给水排水, 2017, 33(23): 33-38.
    [11] JEONG S Y, CHANG S W, NGO H H, et al. Influence of thermal hydrolysis pretreatment on physicochemical properties and anaerobic biodegradability of waste activated sludge with different solids content[J]. Waste Management, 2019, 85: 214-221.
    [12] 马俊伟, 曹芮, 周刚, 等. 浓度对高固体污泥热水解特性及流动性的影响[J]. 环境科学, 2010, 31(7): 1583-1589.
    [13] 刘常青, 王玉兰, 林鸿, 等. 低有机质污泥投加药剂联合低温热水解及后续厌氧发酵研究[J]. 化工学报, 2017, 68(4): 1608-1613.
    [14] SILES J A, BREKELMANS J, MARTIN M A, et al. Impact of ammonia and sulphate concentration on thermophilic anaerobic digestion[J]. Bioresource Technology, 2010, 101(23): 9040-9048.
    [15] 陈汉龙, 严媛媛, 何群彪, 等. 温和热处理对低有机质污泥厌氧消化性能的影响[J]. 环境科学, 2013, 34(2): 629-634.
    [16] DWYER J, STARRENBURY D, TAIT S, et al. Decreasing activated sludge thermal hydrolysis temperature reduces product colour, without decreasing degradability[J]. Water Research, 2008, 42(18): 4699-4709.
    [17] BOUGRIER C, DELGENES J P, CARRERE H. Effects of thermal treatments on five different waste activated sludge samples solubilisation, physical properties and anaerobic digestion[J]. Chemical Engineering Journal, 2008, 139(2): 236-244.
    [18] LU D, SUN F, ZHOU Y. Insights into anaerobic transformation of key dissolved organic matters produced by thermal hydrolysis sludge pretreatment[J]. Bioresource Technology, 2018, 266: 60-67.
    [19] 谭志伟,余爱农,刘应煊. 水分含量对L-抗坏血酸-L-半胱氨酸Maillard反应体系中挥发性产物的影响[J].食品科学,2014,35(10):132-138.
    [20] CHEN S, LI N, DONG B, et al. New insights into the enhanced performance of high solid anaerobic digestion with dewatered sludge by thermal hydrolysis: Organic matter degradation and methanogenic pathways[J]. Journal of Hazardous Materials, 2018, 342: 1-9.
    [21] WILSON C A, NOVAK J T. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment[J]. Water Research, 2009, 43(18): 4489-4498.
    [22] 柯壹红, 曾艺芳, 李华藩, 等. 不同预处理方法对污泥厌氧发酵产酸效果的影响[J]. 环境工程, 2020, 38(8): 21-26

    ,12.
    [23] 高源, 韩芸, 韩露, 等. 不同温度水热处理对高含固污泥有机物转化及组分的影响[J]. 环境工程学报, 2020, 14(10): 2823-2830.
    [24] LIAO Q, GUO L, RAN Y, et al. Optimization of polyhydroxyalkanoates (PHA) synthesis with heat pretreated waste sludge[J]. Waste Management, 2018, 82:15-25.
    [25] XUE Y, LIU H, CHEN S, et al. Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge[J]. Chemical Engineering Journal, 2015, 264: 174-180.
    [26] ZHANG Y, LI H, CHENG Y, et al. Influence of solids concentration on diffusion behavior in sewage sludge and its digestate[J]. Chemical Engineering Science, 2016, 152: 674-677.
    [27] PHUONG L N, UDUGAMA I A, GERNAEY K V, et al. Mechanisms, status, and challenges of thermal hydrolysis and advanced thermal hydrolysis processes in sewage sludge treatment[J]. Chemosphere, 2021, 281:130890.
    [28] ZHANG W, DONG B, DAI X, et al. Enhancement of sludge dewaterability via the thermal hydrolysis anaerobic digestion mechanism based on moisture and organic matter interactions[J]. Science of the Total Environment, 2021, 798:149229.
    [29] HUANG W, ZHAO Z, YUAN T, et al. Enhanced dry anaerobic digestion of swine excreta after organic nitrogen being recovered as soluble proteins and amino acids using hydrothermal technology[J]. Biomass & Bioenergy, 2018, 108: 120-125.
    [30] NAKAKUBO R, MOLLER H B, NIELSEN A M, et al. Ammonia Inhibition of Methanogenesis and Identification of Process Indicators during Anaerobic Digestion[J]. Environmental Engineering Science, 2008, 25(10): 1487-1496.
    [31] DUAN N, DONG B, WU B, et al. High-solid anaerobic digestion of sewage sludge under mesophilic conditions: feasibility study[J]. Bioresource Technology, 2012, 104: 150-156.
    [32] 陈伟, 贾原媛, 郑伟, 等. 胞外多聚物对酶催化污泥厌氧水解的影响研究[J]. 环境科学, 2011, 32(8): 2334-2339.
  • 加载中
计量
  • 文章访问数:  178
  • HTML全文浏览量:  17
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-26

目录

    /

    返回文章
    返回