REMOVAL PERFORMANCE OF NITROGEN AND PHOSPHORUS IN FARMLAND DRAINAGE BY DIFFERENT SCALE DRAINAGE DITCHES AND THE INFLUENCE FACTORS
-
摘要: 针对我国大中型灌区典型的农田排水体系(毛-农-斗-支-干多级排水沟道),以上海市崇明岛新海农场的稻田为切入点,运用单因素方差分析和主坐标分析对农田排水水质进行评价,研究不同尺度排水沟道中氮、磷污染物的时空变化特征,并揭示逐级排水系统对氮、磷污染物的去除规律;结合Spearman相关性分析,探明影响不同尺度排水沟道中氮、磷去除效率的主要因素。结果表明:不同尺度农田排水沟道中NH4+-N、NO3--N、NO2--N、AP和PP浓度在水稻全生长期内总体表现出与TN、TP相一致的变化规律,即水稻播种期(6月)和分蘖期(7月)浓度较高,灌浆成熟期(10月)最低,抽穗扬花期(8月)呈大幅波动状态。毛-农-斗-支-干沟道分别可削减TN为13.30%、39.24%、11.23%、5.27%、8.86%和TP为13.20%、36.57%、9.10%、13.18%、11.07%。农田排水沟道的尺度效应是引起水体理化性质变化,进而造成氮、磷去除效率差异的重要原因。农沟独特的尺寸结构和环境特征使其成为削减氮、磷的热区,在今后的生态型排水通道建设中应加强对农沟的生态化改造。Abstract: Aiming at the typical farmland drainage system (multilevel field-sublateral-head-branch-trunk ditch) in the large and medium-sized irrigation districts of China, this paper selected the rice field of Xinhai Farm in Chongming Island of Shanghai as a starting point, which the one-way analysis of variance and principal coordinate analysis were used to evaluate the drainage water quality of farmland. In order to study the temporal and spatial variation characteristics of nitrogen and phosphorus pollutants in drainage ditches of different scales, and reveal the removal rules of nitrogen and phosphorus pollutants in the step-by-step drainage system. Combined with Spearman correlation analysis, the main factors affecting the removal efficiency of nitrogen and phosphorus in drainage ditches of different scales were identified. Results indicated that ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, available phosphorus and particulate phosphorus in farmland drainage ditches of different scales showed the same change law as total nitrogen and total phosphorus during the whole growing period of rice, that is, the rice seeding period (June) and tillering period (July) had higher concentrations, while the filling maturity period (October) had the lowest concentration, and the heading and flowering period (August) fluctuated greatly. Multilevel field-sublateral-head-branch-trunk ditch can remove 13.30%, 39.24%, 11.23%, 5.27%, 8.86% of total nitrogen and 13.20%, 36.57%, 9.10%, 13.18%, 11.07% of total phosphorus, respectively. The scale effect of farmland drainage ditches was the main reason for the changes in the physical and chemical properties of water bodies, which in turn led to the differences in nitrogen and phosphorus removal efficiency. The unique size structure and environmental characteristics of sublateral ditches made it a hot point for reducing nitrogen and phosphorus, so the ecological renovation of sublateral ditches should be strengthened in construction of ecological drainage ditches in the future.
-
Key words:
- scale effect /
- farmland drainage /
- ecological ditches /
- nitrogen and phosphorus /
- gradual purification
-
[1] 杨林章, 吴永红. 农业面源污染防控与水环境保护[J]. 中国科学院院刊, 2018, 33(2): 168-176. [2] 中华人民共和国生态环境部, 国家统计局, 中华人民共和国农业农村部. 第二次全国污染源普查公报[R]. 2020. [3] 周俊, 邓伟, 刘伟龙. 沟道湿地的水文和生态环境效应研究进展[J]. 地球科学进展, 2008, 23(10): 1079-1083. [4] 杨林章, 施卫明, 薛利红, 等. 农村面源污染治理的"4R"理论与工程实践:总体思路与"4R"治理技术[J]. 农业环境科学学报, 2013, 32(1): 1-8. [5] 田昌, 陈敏, 周旋,等. 生态沟渠对小流域农田排水中氮磷的拦截效果研究[J]. 中国土壤与肥料, 2020(4): 186-191. [6] WANG S Y, WANG W D, ZHAO S Y, et al. Anammox and denitrification separately dominate microbial N-loss in water saturated and unsaturated soils horizons of riparian zones[J]. Water Research, 2019, 162: 139-150. [7] TONG Y D, ZHANG W, WANG X J, et al. Decline in Chinese lake phosphorus concentration accompanied by shift in sources since 2006[J]. Nature Geoscience, 2017, 10: 507-511. [8] 陶冶,朱健,李冰,等. 基于氮、磷收支的人工湿地-池塘循环水养殖系统净化效果评价[J]. 中国海洋大学学报(自然科学版), 2021, 51(2): 36-45. [9] ALEXANDER R B, SMITH R A, SCHWARZ G E. Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico[J]. Nature, 2000, 403(6771): 758-761. [10] PETERSON B J. Control of nitrogen export from watersheds by headwater streams[J]. Science, 2001, 292(5514): 86-90. [11] 魏艳艳. 2009—2018年崇明岛主要土地利用类型植被碳储量变化及其驱动力分析[D]. 上海:上海师范大学, 2018. [12] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法[M]. 4版. 北京:中国环境科学出版社, 2002. [13] 马双忱, 于燕飞, 徐涛,等. ORP在水环境污染防控方面的应用[J]. 工业水处理, 2020, 40(2): 14-18. [14] 师荣光, 周启星, 刘凤枝,等. 城市再生水农田灌溉水质标准及灌溉规范研究[J]. 农业环境科学学报, 2008, 27(3): 839-843. [15] 苗志加, 李宁, 高会杰,等. 以亚硝酸盐为电子受体的反硝化除磷过程中N2O积累的影响因素[J]. 环境工程学报, 2021, 10(6): 2807-2812. [16] 胡洪营, 孙迎雪, 陈卓,等. 城市水环境治理面临的课题与长效治理模式[J]. 环境工程, 2019, 37(10): 6-15. [17] 高大文, 李昕芯, 安瑞,等. 不同DO下MBR内微生物群落结构与运行效果关系[J]. 中国环境科学, 2010, 30(2): 209-215. [18] 何军,崔远来,王健鹏,等. 不同尺度稻田氮磷排放规律试验[J]. 农业工程学报,2010,26(10):56-61. [19] SU C X, ZHU W X, KANG R H, et al. Interannual and seasonal variabilities in soil NO fluxes from a rainfed maize field in the Northeast China[J]. Environmental Pollution, 2021, 286:117312. [20] 万玉文. 水稻灌区防治农田面源水污染排水系统及其效果研究[D]. 武汉:武汉大学, 2017. [21] 黄小龙, 郭艳敏, 张毅敏,等. 沉水植物对湖泊沉积物氮磷内源负荷的控制及应用[J]. 生态与农村环境学报, 2019, 35(12): 1524-1530. [22] 靳皓琛, 崔宁博, 曹阳,等. 根际微生物在控制面源污染中的积极作用[J]. 四川环境, 2020, 39(6): 214-220. [23] NIE S A, LI H, YANG X R, et al. Nitrogen loss by anaerobic oxidation of ammonium in rice rhizosphere[J]. The ISME Journal, 2015, 9:2059-2067. [24] 张昕. 游离氨(FA)对EBPR系统中聚磷菌除磷性能及微生物种群结构影响研究[D]. 兰州:兰州交通大学, 2021. [25] ZHAO K K, MA B, XU Y, et al. Light exposure mediates circadian rhythms of rhizosphere microbial communities[J]. The ISME Journal, 2021, 15: 2655-2664. [26] GUO L L, YU Z H, LI Y S, et al. Plant phosphorus acquisition links to phosphorus transformation in the rhizospheres of soybean and rice grown under CO2 and temperature co-elevated[J]. Science of the Total Environment, 2022, 823: 153558.
点击查看大图
计量
- 文章访问数: 192
- HTML全文浏览量: 27
- PDF下载量: 13
- 被引次数: 0