SCREENING AND CHARACTERISTIC ANALYSIS OF Mn(Ⅱ) OXIDIZING BACTERIA AND ITS REMOVAL EFFECT ON ARSENIC(Ⅲ)
-
摘要: 分离筛选出3株新的高效锰氧化菌,通过谱系鉴定分别命名为Acidovorax facilis WHW-1(敏捷嗜酸菌)、Acinetobacter bereziniae WHW-2 (别雷斯不动杆菌)和Pantoea dispersa WHW-3(分散泛菌),系统研究了3株菌的锰氧化能力及其原位诱导形成的生物锰氧化物(BMO)特性,以及不同初始Mn(Ⅱ)浓度、As(Ⅲ)浓度等因素对 BMO去除As(Ⅲ)的效果与机制。结果表明:1)当细菌接种比为2%,体系初始Mn(Ⅱ)浓度为65 mg/L时,3株锰氧化菌的生长情况良好,WHW-1、WHW-2和WHW-3在培养2周后,诱导产生的 BMO浓度分别达到0.95,0.76,0.53 mg/L;2)当细菌接种比为2%、体系初始Mn(Ⅱ)浓度分别为15,40,65,100 mg/L时,3种细菌诱导形成的BMO在一定范围内随着Mn(Ⅱ)浓度的升高而升高,但Mn(Ⅱ)浓度过高会抑制BMO形成;3)当细菌接种比为2%,Mn(Ⅱ)浓度为65 mg/L,As(Ⅲ)浓度为1~5 mg/L时,原位形成的 BMO对As(Ⅲ)的去除效率均在97%以上,微观分析表明:3种细菌对As(Ⅲ)的去除以吸附作用和铁锰氧化物共沉淀为主。综上可知,筛选出的3株锰氧化菌能够应用于砷污染水环境的修复。
-
关键词:
- 锰氧化菌 /
- 生物锰氧化物(BMO) /
- 砷污染 /
- 共沉淀 /
- 吸附作用
Abstract: Three new strains of high-efficient manganese-oxidizing bacteria were isolated, and named Acidovorax facilis WHW-1, Acinetobacter bereziniae WHW-2 and Pantoea dispersa WHW-3 by pedigree identification. The manganese oxidation ability of the three strains and the characteristics of biogenic Mn oxide (BMO) induced in situ were studied systematically. The effect and mechanism of different initial Mn(Ⅱ) concentrations and As(Ⅲ) concentrations on the removal of As(Ⅲ) by BMO were studied. The results showed that: 1)when the inoculation ratio of bacteria was 2% and the initial Mn(Ⅱ) concentration of the system was 65 mg/L, the three manganese-oxidizing bacteria grew well. After two weeks of culturing, the induced BMO concentrations of WHW-1, WHW-2 and WHW-3 reached 0.95, 0.76 and 0.53 mg/L, respectively; 2)when the inoculation ratio of bacteria was 2% and the initial Mn(Ⅱ) concentration of the system was 15, 40, 65 and 100 mg/L, the BMO induced by the three kinds of bacteria increased with the increase of manganese concentration in a certain range, and a too high manganese concentration would inhibit the formation of BMO; 3)when the inoculation ratio of bacteria was 2%, the concentration of Mn(Ⅱ) was 65 mg/L, and the concentration of As(Ⅲ) was 1 to 5 mg/L, the removal efficiency of As(Ⅲ) by BMO formed in situ was 97% above. Microscopic analysis showed that the removal of As (Ⅲ) by three kinds of bacteria was mainly caused by the adsorption and coprecipitation of Fe-Mn oxides. In summary, the three strains of manganese oxidizing bacteria can be used in the remediation of As contaminated water environment. -
[1] TEBO B M, BARGAR J R, CLEMENT B G, et al. Biogenic manganese oxides:properties and mechanisms of formation-annual review of earth and planetary sciences[J]. Applied and Environmental Microbiology, 2004,32(1):287-328. [2] POST J E. Manganese oxide minerals: crystal structures and economic and environmental significance[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 3447-3454. [3] WANG X Q, YANG Y, LIANG T, et al. Antimonite oxidation and adsorption onto two tunnel-structured manganese oxides: implications for antimony mobility[J]. Chemical Geology, 2021,56:120336. [4] EHRLICH H L. Bacteriology of Manganese Nodules: Ⅰ. bacterial action on manganese in nodule enrichments[J]. Applied microbiology, 1963,11(1):15-19. [5] LIU F, ALI G, WANG H F, et al. Biological characteristics and oxidation mechanism of a new manganese-oxidizing bacteria FM-2[J]. Bio-Medical Materials and Engineering, 2014,24(1):703-709. [6] 许旭萍,王芳,李敏. Arthrobacter echigonensis介导生物氧化锰形成的机制及生物氧化锰的成分[J]. 环境科学, 2011,32(6):1772-1777. [7] 李泽群,李学先,段明宇,等. 喀斯特山区砷渣堆场污染迁移风险与区划[J]. 环境科学学报, 2022,42(3):457-467. [8] TSEGAYE G A, CHRISTIAN V S, GIJS D L. Use of (modified) natural adsorbents for arsenic remediation: a review[J]. Science of the Total Environment, 2019,676:706-720. [9] ZHENG Q, HOU J T, WILLIAM H, et al. As(Ⅲ) adsorption on Fe-Mn binary oxides: are Fe and Mn oxides synergistic or antagonistic for arsenic removal?[J]. Chemical Engineering Journal, 2020,389:124470. [10] LUO J M, MENG X Y, CRITTENDEN J, et al. Arsenic adsorption on α-MnO2 nanofibers and the significance of (100) facet as compared with (110)[J]. Chemical Engineering Journal, 2017,22:492-500. [11] 王楠. 铁锰氧化物对砷的吸附和氧化特性研究[D]. 沈阳:沈阳农业大学,2012. [12] 连斌, 吴骥子, 赵科理,等. 铁锰氧化物-微生物负载生物质炭材料对镉和砷的吸附机制[J]. 环境科学, 2022, 43(3):1584-1595. [13] HOU J T, LUO J L, SONG S X, et al. The remarkable effect of the coexisting arsenite and arsenate species ratios on arsenic removal by manganese oxide[J]. Chemical Engineering Journal, 2016,315: 159-166. [14] BAI Y H, YANG T T, LIANG J S, et al. The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems[J]. Water Research, 2016,98: 119-127. [15] BARSHA M J, DAS S,PAL B Y, et al. Evaluation of arsenic induced toxicity based on arsenic accumulation, translocation and its implications on physio-chemical changes and genomic instability in indica rice (Oryza sativa L.) cultivars[J]. Ecotoxicology (London, England), 2020,29(1):13-34. [16] GEETS J, COOMAN M D, WITTEBOLLE L, et al. Real-time PCR assay for the simultaneous quantification of nitrifying and denitrifying bacteria in activated sludge[J]. Applied Microbiology & Biotechnology, 2007, 75(1):211-221. [17] 张琼. 生物氧化锰的形成及其与砷的交互作用[D]. 太原:山西师范大学, 2013. [18] WANG H W, ZHANG D Y, MOU S Y, et al. Simultaneous removal of tetracycline hydrochloride and As(Ⅲ) using poorly-crystalline manganese dioxide[J]. Chemosphere, 2015,136:102-110. [19] 李斐,吴超,张弛,等.锰氧化微生物及其在土壤环境中的作用[J]. 环境污染与防治, 2020,42(10):1298-1304. [20] NUSRAT S B, SUN Y H, MAHEEN M H, et al. Biologically mediated abiotic degradation (BMAD) of bisphenol A by manganese-oxidizing bacteria[J]. Journal of Hazardous Materials, 2021,417:125987. [21] 张宇,孙睿,曾辉平,等. 生物除铁除锰滤池中锰氧化菌的筛选及研究[J]. 中国给水排水, 2018,34(3):68-71,76. [22] 晏平,姜理英,陈建孟,等. 锰氧化菌Aminobacter sp.H1的分离鉴定及其锰氧化机制研究[J].环境科学, 2014,35(4):1428-1436. [23] 张璐, 李婷婷, 王芳,等. 锰氧化细菌的分离鉴定及其锰氧化特性的分析[J]. 微生物学通报, 2011, 38(3): 328-332. [24] 吴雅静,王华伟,孙英杰,等. 原位形成生物铁锰氧化物对砷(Ⅲ/Ⅴ)的去除效果与机制[J]. 环境科学学报, 2021,41(2):526-535. [25] WANG H W, WANG Y N, SUN Y J, et al. A microscopic and spectroscopic study of rapid antimonite sequestration by a poorly crystalline phyllomanganate: differences from passivated arsenite oxidation[J]. RSC Advances, 2017, 7(61):38377-38386. [26] 张星星,李司令,齐维晓,等. 锰氧化菌Pseudomonas sp. QJX-1对氧四环素的去除作用与机制[J]. 环境科学学报, 2021,41(11):4494-4500. [27] MENG Y T, ZHENG Y M, ZHANG L M, et al. Formation and reactions of biogenic manganese oxides with heavy metals in environment[J]. Journal of Environmental Sciences, 2009, 30(2): 574-582. [28] 陆梦楠. (羟基)氧化铁的制备研究及在饮用水中除砷的应用[D]. 昆明:昆明理工大学, 2011.
点击查看大图
计量
- 文章访问数: 103
- HTML全文浏览量: 14
- PDF下载量: 5
- 被引次数: 0