ASH FUSION CHARACTERISTIC OF FOOD WASTE DIGESTATE AND MUNICIPAL SOLID WASTE DURING CO-COMBUSTION PROCESS
-
摘要: 针对厨余沼渣与城市生活垃圾中灰分含量高、易结渣结焦的问题,通过XRF、XRD、SEM表征及灰熔融特征温度测量、热力学平衡计算,对其混合燃烧的灰熔融特性及矿物转化规律进行研究。结果表明:厨余沼渣灰渣的主要矿物组成为磷酸盐、硅酸盐。城市生活垃圾的灰分则主要由SiO2、CaO、MgO等氧化物与氯化盐构成。磷酸钙和霞石发生低温共熔反应是厨余沼渣灰渣固相组分含量迅速下降的主要原因。城市生活垃圾灰渣在熔融过程中会产生难溶矿物Ca4Si2O8-Ca3P2O8,导致灰熔融温度上升。随着城市生活垃圾占比增大,变形温度不断增大,软化温度(ST)、半球温度(HT)、流动温度(FT)先减小后增大。当厨余沼渣的混合比例<10%时,ST、HT和FT均>1400 ℃,结渣指数Fs均>1342,表现出较弱的结渣倾向。该研究结果可为厨余沼渣在城市生活垃圾焚烧厂中协同处置提供参考。Abstract: Aiming at the high ash content and slagging problem of food waste digestate (FWD) and municipal solid waste (MSW), the ash fusion characteristic and mineral transformation law of FWD and MSW during co-combustion process were studied by XRF, XRD, SEM, ash fusion temperature measurement and thermodynamic equilibrium simulation. Results showed the main minerals in FWD ash were phosphate and silicate. MSW ash was mainly composed of oxide, such as SiO2, CaO and MgO, and chloride. The low-temperature eutectic reaction occurred between calcium phosphate and nepheline resulting in the rapid decrease of the solid phase in FWD ash. Refractory mineral, Ca4Si2O8-Ca3P2O8 was generated during the melting of MSW ash, which led to the increase in ash fusion temperature. With the increase of MSW proportion, the deformation temperature increased, but softening temperature (ST), hemisphere temperature (HT), and flow temperature (FT) first decreased and then increased. When the proportion of FWD was less than 10%, the ST, HT and FT all exceeded 1400 ℃, and the slagging index Fs was greater than 1342, showing a weak slagging tendency. The results of this paper would play a guiding role in the collaborative disposal of food waste digestate in municipal solid waste incineration plants.
-
Key words:
- food waste digestate /
- municipal solid waste /
- co-combustion /
- ash residue /
- ash fusion characteristic
-
[1] JIN C X, SUN S Q, YANG D H, et al. Anaerobic digestion: an alternative resource treatment option for food waste in China[J]. Science of the Total Environment, 2021, 779: 146397. [2] DUTTA S, HE M J, XIONG X N, et al. Sustainable management and recycling of food waste anaerobic digestate: a review[J]. Bioresource Technology, 2021, 341: 125915. [3] 国家发展改革委, 住房城乡建设部. "十四五"城镇生活垃圾分类和处理设施发展规划[EB/OL]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202105/t20210513_1279763.html?code=&state=123.2021-5-6. [4] 张德俐, 王芳, 易维明, 等. 木质纤维素生物质厌氧发酵沼渣热化学转化利用研究进展[J]. 农业工程学报, 2021, 37(21): 225-236. [5] MENARDO S, GIOELLI F, BALSARI P. The methane yield of digestate: effect of organic loading rate, hydraulic retention time, and plant feeding[J]. Bioresource Technology, 2011, 102(3): 2348-2351. [6] 刘军, 邓文龙, 黄德胜, 等. 电厂锅炉水冷壁耐高温防腐措施中的环境因素影响[J]. 环境工程, 2022, 40(1): 310. [7] BARBANERA M, COTANA F, DI MATTEO U. Co-combustion performance and kinetic study of solid digestate with gasification biochar[J]. Renewable Energy, 2018, 121: 597-605. [8] 刘亮, 侯勤加, 夏辉, 等. 生物质与脱脂餐厨垃圾混烧对灰熔融特性的影响[J]. 环境工程, 2019, 37(11): 166-171. [9] 魏潇潇, 王小铭, 李蕾, 等. 1979—2016年中国城市生活垃圾产生和处理时空特征[J]. 中国环境科学, 2018, 38(10): 3833-3843. [10] GARCIA R, PIZARRO C, ALVAREZ A, et al. Study of biomass combustion wastes[J]. Fuel, 2015, 148: 152-159. [11] ZHANG J S, WANG Q Q, ZHENG P W, et al. Anaerobic digestion of food waste stabilized by lime mud from papermaking process[J]. Bioresource Technology, 2014, 170: 270-277. [12] 谭学军, 王磊, 王逸贤, 等. 城市污水处理厂污泥厌氧消化沼液特性研究[J]. 给水排水, 2020, 56: 237-241. [13] GRIMM A, SKOGLUND N, BOSTROM D, et al. Bed agglomeration characteristics in fluidized quartz bed combustion of phosphorus-rich biomass fuels[J]. Energy & Fuels, 2011, 25(3): 937-947. [14] 熊金磊. 我国城市生活垃圾焚烧飞灰中高氯含量特性及其影响[J]. 中国资源综合利用, 2019, 37(6): 117-119. [15] SASI T, MIGHANI M, ORS E, et al. Prediction of ash fusion behavior from coal ash composition for entrained-flow gasification[J]. Fuel Processing Technology, 2018, 176: 64-75. [16] ZHANG Q, LIU H F, QIAN Y P, et al. The influence of phosphorus on ash fusion temperature of sludge and coal[J]. Fuel Processing Technology, 2013, 110: 218-226. [17] WANG Y B, LI L Y, AN Q W, et al. Effect of Ca3(PO4)2 additive on the slagging behavior during the cofiring of high-sodium coal and iron-rich coal[J]. Fuel Processing Technology, 2021, 222: 106965.
点击查看大图
计量
- 文章访问数: 80
- HTML全文浏览量: 15
- PDF下载量: 5
- 被引次数: 0