MINERALIZATION MECHANISM OF ORGANIC MATTER IN THE PROCESS OF HEAP FERMENTATION IN A WASTE STORAGE PIT OF AN INCINERATION POWER PLANT
-
摘要: 垃圾入炉焚烧前在储池中的堆酵过程,其含水率和有机物含量可能发生重要变化,而垃圾含水率和有机物含量是决定垃圾焚烧发电效率的关键因素,且二者受温度变化的影响较为显著。为研究在不同温度下垃圾堆酵过程中含水率的变化及有机物的矿化作用机制,对储池垃圾在6个发酵温度(10,15,20,30,40,50 ℃)下,0~10 d的堆酵过程内有机物的矿化程度进行探究,并通过微生物测序对堆酵过程优势微生物及微生物群落进行研究。结果表明:在中高温条件下,垃圾固体及渗滤液的矿化程度在第3~6天达到较高水平,垃圾储池堆酵温度和时间控制在15~20 ℃,堆酵3~6 d为宜。垃圾堆酵过程优势菌群主要为厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、放线杆菌门(Actinobacteriota),其相对丰度分别为59.99%~98.75%、0.51%~30.67%、0.11%~8.95%。在属水平分类上,Pediococcus、Lactiplantibacillus、Levilactobacillus、Latilactobacillus、Limosilactobacillus、Companilactobacillus、Acetobacter属是发酵过程中的优势菌属。优势菌群在堆酵过程中发挥着垃圾生物降解、有机物矿化及水解酸化等作用。在发酵温度15~20 ℃下,可投加一定量的厚壁菌门(Firmicutes)微生物菌剂以提高堆酵效果,提高垃圾焚烧发电的效率。Abstract: The fermentation process in the storage pit before waste incineration have an important impact on the moisture content and organic content of waste. The moisture content and organic content of waste are the key factors that determine the efficiency of waste incineration power generation, and they are obviously affected by temperature changes. In order to study the mineralization mechanism, the mineralization degree of organic matter in the heap fermentation process of storage tank garbage at six fermentation temperatures (10, 15, 20, 30, 40, 50 ℃) in 0~10 day was explored, and the dominant microorganisms and microbial communities in the heap fermentation process were studied by microbial sequencing. The results showed that under medium and high temperature conditions, the mineralization degree of solid waste and leachate by microorganisms reached a high level in the third to sixth days, and heap fermentation temperature in the waste storage pool were controlled at 15~20 ℃. The dominant bacteria in the process of garbage heap fermentation were Firmicutes, Proteobacteria and Actinobacteria, with relative abundances of 59.99% to 98.75%, 0.51% to 30.67% and 0.11% to 8.95%, respectively. In terms of genus level classification, Pediococcus, Latiplantibacillus, Levilactobacillus, Latilactobacillus, Limosilactobacillus, Companion Lactobacillus, Acetobacter, etc. had a large abundance, and were the dominant bacteria in the fermentation process. The dominant flora played a key role in the biodegradation, mineralization of organic matter, and hydrolysis and acidification in heap fermentation process. In 15~20 ℃, a certain amount of Firmicutes microbial agents could be added to improve the fermentation effect and power generation efficiency by waste incineration.
-
[1] DYKE P H, FOAN C, FIEDLER H. PCB and PAH releases from power stations and waste incineration processes in the UK[J]. Chemosphere, 2003, 50(4):469-480. [2] 孔宪文,王智远,任卫东.垃圾的燃料价值[J].东北电力技术,2002(7):22-26. [3] 任芝军. 固体废物处理处置与资源化技术[M]. 哈尔滨:哈尔滨工业大学出版社, 2010. [4] 彭小龙, 毛梦梅, 袁晓辰,等. 与垃圾焚烧协同的污泥热干化工艺选择[J]. 环境卫生工程, 2019, 27(1):47-49. [5] 方源圆, 周守航, 阎丽娟. 中国城市垃圾焚烧发电技术与应用[J]. 节能技术, 2010, 28(1):76-80. [6] 李衡. 垃圾焚烧发电产业的发展新模式[J]. 中国电力企业管理, 2018(10):82-83. [7] REZAEI M, GHOBADIAN B, SAMADI S H, et al. Electric power generation from municipal solid waste: a techno-economical assessment under different scenarios in Iran[J]. Energy, 2018, 152(JUN.1):46-56. [8] 周菊华, 刘晓. 城市生活垃圾焚烧及发电技术[M]. 北京:中国电力出版社, 2014. [9] 陈媛. 城市生活垃圾焚烧发电的可行性研究[J]. 中国资源综合利用, 2017, 35(7):41-57. [10] HUANG W H. Analysis of power generation increasing factors in domestic waste incineration power plant[J]. Chemical Engineering Design Communications, 2019. [11] 杨霞, 杨朝晖, 陈军,等. 城市生活垃圾填埋场渗滤液处理工艺的研究[J]. 环境工程, 2000,18(5):12-14. [12] 张懿. 城市垃圾填埋场渗滤液的处理技术综述[J]. 重庆环境科学, 2000,22(5):63-65,78. [13] 商平, 李芳然, 郝永俊,等. 城市生活垃圾焚烧前堆酵脱水研究进展[J]. 环境卫生工程, 2012, 20(1):5-8. [14] 张衍国, 李清海, 龚伯勋,等. 垃圾堆放发酵机理与应用工艺研究[J]. 环境工程学报, 2005, 6(10):69-72. [15] 阿世孺, 张洪波. 堆酵——低热值生活垃圾焚烧工艺的重要环节[J]. 能源研究与利用, 2003(4):39-40. [16] 陈国义, 李兴国, 高于. 刍议北方地区冬季生活垃圾堆酵析水[J]. 环境卫生工程, 2019, 27(4):32-34,40. [17] BOHN I, BJÖRNSSON L, MATTIASSON B. The energy balance in farm scale anaerobic digestion of crop residues at 11~37℃[J]. Process Biochemistry, 2007,42(1):57-64. [18] 阿世孺, 张洪波. 堆酵——低热值生活垃圾焚烧工艺的重要环节[J]. 城市垃圾处理技术, 2003(1):16-18. [19] 任安东, 郑义, 孙天姿,等. 沼液回流时间对厨余垃圾高含固厌氧发酵的影响[J]. 环境工程, 2021, 39(12):159-165,140. [20] WANG X Y, CHEN G Y, ZHOU S B, et al. Study on semi-continuous anaerobic fermentation of straw based on total reflux of biogas slurry[J]. Journal of Anhui Normal University (Natural Science), 2019,42(4):341-345. [21] 卢艳娟,尤宇嘉. 沼液回流对厌氧沼气工程的影响[J]. 中国沼气,2015,33(3):66-68. [22] 曹先艳,赵由才,袁玉玉,等. 氨氮对餐厨垃圾厌氧发酵产氢的影响[J]. 太阳能学报,2008(6):751-755. [23] DUZA M B, MASTAN S A. Microbial enzymes and their applications: a review[J]. Indo American Journal of Pharmaceutical Research, 2013, 3(8):6208-6219. [24] 彭立凤, 赵汝淇, 谭天伟. 微生物脂肪酶的应用[J]. 食品与发酵工业, 2000, 26(3):68-73. [25] 国家环境保护总局. 《水和废水监测分析方法》编委会. 水和废水监测分析方法[M].4版.北京:中国环境科学出版社, 2002.
点击查看大图
计量
- 文章访问数: 75
- HTML全文浏览量: 4
- PDF下载量: 7
- 被引次数: 0