PREPARATION OF EGG SHELL BIOCHAR AND ITS ADSORPTION PERFORMANCE FOR Cu(Ⅱ) AND ANILINE
-
摘要: 生物炭吸附剂因其巨大的比表面积和经济环保特性,在水污染治理领域具有广阔的应用前景。利用餐余垃圾鸡蛋壳为原材料制备生物炭吸附剂,采用扫描电镜(SEM)、X射线衍射(XRD)、磁滞回线(VSM)分析鸡蛋壳生物炭理化性能,采用单因素实验分析生物炭对Cu(Ⅱ)和苯胺混合污染物最佳吸附性能,利用磁铁回收负磁吸附剂后进行吸附解吸实验,研究其循环利用的稳定性。结果表明:在热解温度850 ℃,固液比1∶2,1% KMnO4改性12 h条件下,成功制备出鸡蛋壳生物炭,改性后的生物炭具有良好的吸附空间结构和磁性,比表面积有显著提升。pH=6.0, 25 ℃,Cu(Ⅱ)和苯胺初始浓度为20,10 mg/L,吸附剂15 g/L,吸附时间24 h为生物炭最佳吸附条件,此时Cu(Ⅱ)和苯胺最大吸附容量为1.33,0.64 mg/g。鸡蛋壳生物炭具有良好的循环再生性能,经4次循环再生后,Cu(Ⅱ)和苯胺去除率分别达到82.47%和70.08%。鸡蛋壳生物炭被证明是一种具有潜力的吸附材料。Abstract: Biochar for adsorption has been used in water pollution control, it has enormous specific surface area and is economical and environment-friendly. In this paper, eggshell biochar was prepared and its physicochemical and structural characteristics were detected by scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM), and influencing factors and adsorption performance on Cu(Ⅱ) and aniline mixed pollutants was investigated by single-factor experiment. Meanwhile, the cycle regeneration stability of eggshell biochar was analyzed by magnet recovery, adsorption and desorption experiments. The experimental results showed that the eggshell biochar was successfully prepared at the pyrolysis temperature of 850 ℃, modified with 1% KMnO4 for 12 h and the solid-liquid ratio of 1∶2. The modified biochar had good adsorption space structure and magnetic properties, and the specific surface area was significantly improved. pH of 6.0, 25 ℃, initial concentration of Cu(Ⅱ) and aniline of 20 mg/L and 10 mg/L, 15 g/L of eggshell biochar, and 24 h adsorption time were the best adsorption conditions for biochar. The maximum adsorption capacity of Cu(Ⅱ) and aniline was 1.33 mg/g and 0.64 mg/g and eggshell biochar had good recycling performance, after four cycles of regeneration, the removal rates of Cu(Ⅱ) and aniline were still kept at 82.47% and 70.08%, respectively. Eggshell biochar is a potential adsorption material.
-
Key words:
- eggshell biochar /
- adsorption /
- Cu(Ⅱ) /
- aniline /
- regeneration
-
[1] 何海霞. 印染废水处理技术研究进展[J].中小企业管理与科技,2021(2):184-185. [2] 王燕燕. 印染废水中重金属来源及清洁生产方式探讨[J].资源节约与环保,2019(8):88-89. [3] 吴勇民,陈新才,楼洪海,等. 印染废水中苯胺类化合物处理的研究进展[J].印染,2014(2):51-54. [4] H.Ф.依兹麦罗夫.环境中常见污染物第三辑[M].北京:中国环境科学出版社,1989:10-15. [5] 孙蓉. 印染废水处理技术综述[J]. 绿色环保建材,2016(2):145-146. [6] 马玉萍.印染废水深度处理工艺现状及发展方向[J]. 工业用水与废水,2013,44(4):1-5. [7] 高程,黄涛,彭道平. 吸附法处理印染废水的研究进展[J].能源环境保护,2014,28(1):30-34. [8] 曾国驱,任随周,许玫英,等. ABR结合SBR法处理印染废水的研究[J]. 2005,32(6):68-73. [9] 马江权,郭楠,徐守勇.微滤/纳滤联用技术深度处理印染废水[J].水处理技术,2010,36(9):65-68. [10] 陈晓燕,何秉宇,张雯. 印染废水处理研究进展[J].纺织导报,2018(3):60-62. [11] 马玉萍. 印染废水深度处理工艺现状及发展方向[J].工业用水与废水,2013,44(4):1-5. [12] WANG Z H,GUO H,SHEN F,et al.Biochar produced from oak sawdust by lanthanum (la)-involved pyrolysis for adsorption of ammonium (NH4+),nitrate (NO3-),and (PO43-)[J].Chemosphere,2015,119: 646-653. [13] 张鹏会,李艳春,胡浩斌,等. 银杏叶生物炭对不同染料的吸附作用[J]. 化工新型材料,2020,48(9):212-217. [14] 薛姗. 厨余垃圾生物炭的制备及其吸附水中氨氮的研究[J].供水技术,2022,16(2):8-11. [15] 赵涛,余伟达,丘锦荣,等. 玉米秸秆生物炭对水中磺胺类抗生素的吸附性能[J]. 福建农业学报,2021,36(9):1100-1109. [16] 韩玉,汪兰,孙智达,等. 蛋壳及蛋壳膜吸附性质的研究进展[J]. 食品工业科技,2012,33(13):388-391. [17] 赵越,赵保卫,刘辉,等. 热解温度对生物炭理化性质和吸湿性的影响[J]. 环境化学,2020,39(7):2006-2012. [18] 鲁俊文,王维,张爱清,等. 纳米氧化镁的吸附及分解性能研究进展[J]. 硅酸盐通报,2011,35(5):1094-1098. [19] 孙建财,周丹丹,王薇,等. 生物炭改性及其对污染物吸附与降解行为的研究进展[J].环境化学,2021,40(5):1503-1513. [20] FANG G D,LIU C,GAO J,et al. Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation[J]. Environmental Science & Technology, 2015, 49(9): 5645-5653. [21] 莫贞林,曾鸿鹄,林华,等. 高锰酸钾改性桉木生物炭对Pb(Ⅱ)的吸附特性[J]. 环境科学,2021,42(11):5440-5449. [22] 王旭峰,郑立安,刘毛,等. 改性玉米芯生物炭对废水中铜和氨氮的吸附[J]. 工业水处理,2017,37(1):37-41. [23] 商中省,涂佳勇,蔡毅猛,等. 高锰酸钾改性核桃壳基生物炭对水溶液中Cu2+的吸附性能[J]. 天津科技大学学报,2020,35(5):25-31,65. [24] 李仕友,胡忠清,廖建彪,等. 高锰酸钾改性生物炭对U(Ⅵ)的吸附特性[J]. 安全与环境学报,2018,18(2):671-677. [25] PANAGIOTOU E, KAFA N, KOUTSOKERAS L, et al. Turning calcined waste egg shells and wastewater to Brushite: phosphorus adsorption from aqua media and anaerobic sludge leach water[J]. Journal of Cleaner Production, 2018, 178:419-428. [26] LIU X N, SHEN F, QI X H. Adsorption recovery of phosphate from aqueous solution by CaO-biochar composites prepared from eggshell and rice straw[J]. The Science of the Total Environment, 2019, 666:694-702. [27] 李浩瑞,吴丽萍,文科军,等. 高锰酸钾改性蛋壳对水中磷的吸附特性研究[J]. 天津城建大学学报,2020,26(3):208-212. [28] 韩鲁佳,李彦霏,刘贤,等.生物炭吸附水体中重金属机理与工艺研究进展[J]. 农业机械学报,2017,48(11):1-11. [29] 蒋子旸,徐敏,伍钧. 高铁酸钾/高锰酸钾改性生物炭对Cd2+的吸附研究[J]. 农业环境科学学报,2021,40(4): 876-883. [30] SHEN F, QIU M O, HUA Y, et al. Dual-functional templated methodology for the synthesis of hierarchical porous carbon for supercapacitor[J]. Chemistry Select, 2018, 3(2):586-591. [31] 胡学玉,陈窈君,张沙沙,等. 磁性玉米秸秆生物炭对水体中Cd2+的去除作用及回收利用[J]. 农业工程学报,2018,34(19):208-218. [32] KIM D, HWANG S J, KIM Y,et al. Removal of heavy metals from water using chicken egg shell powder as a bio-adsorbent[J]. Bulletin of the Korean Chemical Society, 2019,40:1156-1161. [33] YIN H B, KONG M. Simultaneous removal of ammonium and phosphate from eutrophic waters using natural calcium-rich attapulgite-based versatile adsorbent[J]. Desalination, 2014, 351:128-137. [34] SHAN R R, YAN L G, YANG K, et al. Magnetic Fe3O4/MgAl-LDH composite foreffectiveremoval of three red dyes from aqueous solution[J]. Chemical EngineeringJournal, 2014, 252:38-46. [35] YANG K, JIANG Y, YANG J J, et al. Correlations and adsorption mechanisms of aromatic compounds on biochars produced from various biomass at 700℃[J]. Environmental Pollution, 2018,233:64-70. [36] 方俊华,张啸,荆慧娟. 磁化改性污泥基生物炭对水中磷的吸附[J]. 水处理技术,2021,47(12):37-41. [37] LIANG S,SHI S Q,ZHANG H H,et al. One-pot solvothermal synthesis of magnetic biochar from waste biomass:Formation mechanism and efficient adsorption of Cr(Ⅵ) in an aqueous solution[J]. Sci. TotalEnviron.,2019,695:133886. [38] 仇银燕,张平,李科林,等. 玉米秸秆生物炭对苯胺的吸附[J]. 化工环保,2015.35(1):6-9. [39] 宋泽峰,石晓倩,刘卓,等. 芦苇生物炭的制备、表征及其吸附铜离子与双酚A的性能[J]. 环境化学,2020,39(8):2196-2205. [40] 庞克静,孟庆杰,宫磊,等. 核桃壳生物炭的制备及其对苯胺的吸附研究[J]. 山东化工,2021,50(22):54-56. [41] 刘立. 生物炭基吸附剂的制备及其对Pb2+和Cu2+的吸附性能研究[D]. 广州:广州大学,2019. [42] SUN C,CHEN T,HUANG Q X,et al.Enhanced adsorption for Pb(Ⅱ) and Cd(Ⅱ) of magnetic rice husk biochar by KMnO4 modification[J].Environmental Science and Pollution Research,2019,26(9): 8902-8913. [43] KADIRVELU K, THAMARAISELVI K, NAMASIVAYAM C, et al. Removal of heavymetalsfrom industrial wastewaters by adsorption onto activated carbon prepared from anagricultural solid waste[J]. Bioresource Technology,2001,76(1):63-65. [44] 王传岭,于敏,周子媚. 柚子皮生物炭对铜离子的吸附[J]. 山东化工,2020,49(19):16-18. [45] 程水清. 玉米秸秆生物炭处理含铜废水效果研究[J]. 安徽农学通报,2017,23(17):78-81. [46] 康宁. 磁性生物炭对Cr(Ⅵ)的吸附性能研究[D]. 武汉:武汉科技大学,2020. [47] 周艳,边清泉,罗娅君,等. 改性碱木质素对苯胺的吸附研究[J]. 安徽农科学,2011, 39(25): 15554-15566.
点击查看大图
计量
- 文章访问数: 233
- HTML全文浏览量: 66
- PDF下载量: 9
- 被引次数: 0