SHIELDING EFFECT OF ZINC SULFATE ON CYANIDE COMPLEX DURING THIOCYANIDE DETECTION FOR COKING WASTEWATER
-
摘要: 焦化废水中含有大量的氰化物(CN-)和硫氰化物(SCN-)等有毒有害污染物,在预处理过程中,一般采用硫酸亚铁(FeSO4)混凝沉淀去除硫化物(S2-)、油分、悬浮物并降低废水毒性。上述过程同时会形成亚铁氰化物([Fe(CN)6]4-),[Fe(CN)6]4-再与Fe3+形成亚铁氰化铁沉淀(普鲁士蓝,Fe4[Fe(CN)6]3),干扰硫氰酸铁(Fe(SCN)3)分光光度法对SCN-检测的准确性。为解决上述问题,提出在SCN-显色前加入硫酸锌(ZnSO4)的方法,屏蔽过量的[Fe(CN)6]4-,并分析ZnSO4对SCN-检测的影响程度。结果表明:Fe(SCN)3-ZnSO4分光光度法能屏蔽工业废水中[Fe(CN)6]4-和大部分金属氰络合物的干扰,从而能快速准确地测定SCN-。方法中SCN-适用质量浓度为0.2~34.8 mg/L,统计方差为1.86%,回收率达到94%~103%。该方法适用于多点多频率采样分析,可为工业废水SCN-的现场监测提供一种新手段。Abstract: Coking wastewater contains a large amount of cyanide (CN-) and thiocyanide (SCN-) and other toxic and harmful pollutants. In the pretreatment process prior to the biological process, generally, ferrous sulfate (FeSO4) was used to coagulate and precipitate sulfide, oil, and suspended matter to reduce the toxicity of wastewater. At the same time, ferrocyanide ([Fe(CN)6]4-) was formed, and then [Fe(CN)6]4- was combined with Fe3+ to form iron ferrocyanide precipitation (Prussian blue, Fe4[Fe(CN)6]3), which interfered with the accuracy of ferric thiocyanate [Fe(SCN)3] spectrophotometric method for SCN- detection. To solve the above problems, it was proposed that zinc sulfate (ZnSO4) should be added to shield excessive [Fe(CN)6]4- before Fe(SCN)3 color development; moreover, the influence of ZnSO4 on the analysis and detection of SCN- was analyzed. The results showed that the Fe(SCN)3-ZnSO4 spectrophotometry could shield the interference of [Fe(CN)6]4- and most metal cyanide complexes in industrial wastewater, so that SCN- can be determined quickly and accurately. The applicable concentration range of this method was 0.2~34.8 mg/L of SCN-, the statistical variance was 1.86%, and the recovery rate was 94%~103%. This method is suitable for multi-point and multi-frequency sampling analysis, and is a novel method for the site monitoring of SCN- in industrial wastewater.
-
Key words:
- coking wastewater /
- thiocyanate /
- cyanide /
- Prussian blue /
- zinc sulfate /
- shielding effect
-
[1] 高富聪, 陈国宝, 马云瑞, 等. 废水中硫氰酸根的脱除研究现状[J]. 有色金属(冶炼部分), 2021(3): 143-154. [2] 孙晓雪, 韦聪, 罗培, 等. OHO-MBR组合工艺处理实际焦化废水的可行性[J]. 环境工程学报, 2021, 18(8): 2759-2769. [3] WEI C H, LI Z M, PAN J X, et al. An Oxic-Hydrolytic-Oxic process at the nexus of sludge spatial segmentation, microbial functionality, and pollutants removal in the treatment of coking wastewater[J]. ACS EST Water, 2021, 1: 1252-1262. [4] 武恒平, 韦朝海, 任源, 等. 焦化废水预处理及其特征污染物的变化分析[J]. 化工进展, 2017, 36(10): 3911-3920. [5] NELSON L. Acute cyanide toxicity: mechanisms and manifestations[J]. Journal of Emergency Nursing, 2006, 32(4): 8-11. [6] MARCIN M. Theoretical modeling of structure-toxicity relationship of cyanides[J]. Toxicology Letters, 2021, 349(1): 30-39. [7] 黄会静, 韦朝海, 吴超飞, 等. 焦化废水生物处理A/O/H/O工艺中氰化物的去除特性[J]. 化工进展, 2011, 30(5): 1141-1146. [8] 卢永, 申世峰, 严莲荷, 等. 焦化废水生化处理研究新进展[J]. 环境工程, 2009, 27(4): 13-16. [9] 刘国新, 吴海珍, 孙胜利, 等. 市政污泥接种焦化废水好氧降解能力及微生物群落演替的响应分析[J]. 环境科学, 2017, 38(9): 3807-3815. [10] 肖小双, 安雪姣, 叶晗媛, 等. 废水中硫氰酸盐的微生物降解研究进展[J]. 生物技术通报, 2021, 37(2): 224-235. [11] 刘显清, 吴海珍, 李国保, 等. 化学沉淀结合Fenton法预处理脱硫废液的原理与效果分析[J]. 环境化学, 2012, 31(10): 1527-1534. [12] 米玉辉, 孙慧霞. 焦化废水处理技术进展与发展方向[J]. 山西化工, 2021(1): 215-217. [13] 刘欢, 邱德跃, 张燕, 等. 硫氰化物废水处理的研究进展[J]. 精细化工中间体, 2015, 45(5): 1-4. [14] SRIRAMOJU S K, DASH P S, MAJUMDAR S. Meso-porous activated carbon from lignite waste and its application in methylene Blue adsorption and coke plant effluent treatment[J]. Journal of Environmental Chemical Engineering, 2021,9(1): 104784. [15] 仲崇波, 王成功, 陈炳辰. 氰化物的危害及其处理方法综述[J]. 金属矿山, 2001(5): 44-47. [16] 朱洪威, 石旭, 崔韬, 等. "铁络合-生物法"组合工艺降解有机、无机氰[J]. 环境与发展, 2019, 31(2): 59-61. [17] KONG Q P, LI Z M, ZHAO Y S, et al. Investigation of the fate of heavy metals based on process regulation-chemical reaction-phase distribution in an A-O1-H-O2 biological coking wastewater treatment system[J]. Journal of Environmental Management, 2019, 247: 234-241. [18] YU X B, XU R H, WEI C H, et al. Removal of cyanide compounds from coking wastewater by ferrous sulfate: improvement of biodegradability[J]. Journal of Hazardous Materials, 2016, 302: 468-474. [19] 国家生态环境部. 水质硫氰酸盐的测定异烟酸-吡唑啉酮分光光度法:GB/T 13897—1992[S]. 北京: 北京标准出版社, 1992. [20] 张宁, 周鑫, 张养东, 等. 乳中硫氰酸钠检测方法研究进展[J]. 质量安全, 2020(9): 62-65. [21] 王永强. 离子色谱法快速测定水和污水中的硫氰酸盐[J]. 环境工程, 1991, 9(1): 28-30. [22] 葛仲义, 陈永红, 王菊, 等. 含硫化物、硫氰酸盐水质中易释放氰化物测定方法研究[J]. 分析测试, 2021, 42(2): 90-93. [23] 潘霞霞, 黄会静, 冯春华, 等. 焦化废水中硫氰化物的快速检测方法[J]. 煤化工, 2011, 39(1): 15-18. [24] 沈健, 赵赫, 李玉平, 等. 新型脱氰剂处理焦化废水深度脱氰混凝工艺的应用研究[C]//中国环境科学学会学术年会论文集(第3卷). 2012: 1783-1788. [25] 国家质量监督局. GB/T 601-2016, 化学试剂标准滴定溶液的制备[S/OL]. 中国: 中华人民共和国国家标准, 2016. https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=B15F965BD56094DA3969C1B863811AEF. [26] DE BERG K, MAEDER M, CLIFFORD S. A new approach to the equilibrium study of iron(Ⅲ) thiocyanates which accounts for the kinetic instability of the complexes particularly observable under high thiocyanate concentrations[J]. Inorganica Chimica Acta, 2016, 445: 155-159. [27] DEAN J A. 兰氏化学手册[M]. 2版. 魏俊发, 译. 北京: 科学出版社. 2000. [28] 李湘溪, 吴超飞, 吴海珍, 等. 焦化废水处理过程中盐分变化及其影响因素[J]. 化工进展, 2016, 35(11): 3690-3700. [29] 蒋洪圻, 徐光宪. 硫氰酸镉络合物的极谱研究[J]. 科学通报, 1957(1): 12-13.
点击查看大图
计量
- 文章访问数: 74
- HTML全文浏览量: 6
- PDF下载量: 3
- 被引次数: 0