EFFECT OF LOESS FLOCCULANT ON WATER PURIFICATION AND DISSOLVED ORGANIC MATTER REMOVAL IN SHAHU LAKE
-
摘要: 采用沙湖黄土作为絮凝剂,以硅藻土为参照,探究沙湖黄土对沙湖中水质絮凝净化效果。同时采用同步荧光光谱结合导数荧光、平行因子分析和二维相关光谱分析沙湖黄土对沙湖溶解性有机物(DOM)的净化效果。结果表明:黄土对TN、TP、CODMn和Chl.a的最高去除效率分别为28.85%、51.52%、24.87%和42.86%。100目和200目沙湖黄土对TP和TN均具有较好的絮凝效果,而硅藻土仅TN的絮凝效果优于黄土。DOM的平行因子分析(PARAFAC)能够识别5个荧光组分,类蛋白荧光为主要的荧光组分。黄土絮凝剂对类蛋白荧光组分(C5)去除效果最高,为56.38%。二阶导数荧光能够识别出6个荧光峰,类蛋白、类富里酸和类腐植酸物质的去除率分别为48.54%、16.45%和1.43%。二维相关光谱分析结果表明,黄土絮凝剂对荧光有机物的去除次序为285 nm→336 nm→369 nm,类蛋白荧光物质能够优先被去除。因此,沙湖黄土可作为絮凝剂用于净化沙湖水质。Abstract: In this study, the loess in Shahu Lake was used as a flocculant to explore the water purification effect of flocculation, with diatomite used as a control group. Meanwhile, the purification effect of loess on dissolved organic matter (DOM) in Shahu Lake water was analyzed by synchronous fluorescence spectroscopy in combination with derivative fluorescence, parallel factor analysis and two-dimensional correlation spectroscopy. The results showed that the highest removal rates of TN, TP, CODMn and Chl.a were 28.85%, 51.52%, 24.87% and 42.86%, respectively. Shahu loess with grain sizes of 100, 200 mesh had a better flocculation effect on TP and TN. However, the flocculation effect of diatomite on TN was better than that of the loess. Five fluorescent components were identified in DOM parallel factor analysis (PARAFAC), among which the protein-like component was the dominant one. The loess flocculant had the highest removal effect (56.38%) on the protein-like fluorescent component (C5). The second derivative fluorescence could identify six fluorescence peaks. Among them, the removal rates of protein-, fulvic- and humic-like substances were 48.54%, 16.45% and 1.43%, respectively. The results of the two-dimensional correlation spectroscopy analysis showed that the preferential sequence of removal of the fluorescent components by loess flocculant followed the order of 285 nm→336 nm→369 nm, suggesting that protein-like fluorescent component was removed preferentially. Shahu loess can be used as a flocculant to purify Shahu Lake water.
-
Key words:
- Shahu loess /
- flocculation /
- water quality /
- DOM /
- parallel factor analysis
-
[1] 陈珂, 张健, 李娇, 等. 宁夏平罗沙湖水体富营养化变化特征分析及防治对策[J]. 宁夏农林科技, 2016, 57(11): 56-58. [2] 朱明莹, 于洪贤, 马成学, 等.沙湖浮游植物多样性分析及水质评价[J]. 水产学杂志, 2015, 28(3):39-43. [3] 孙永军, 吴卫杰, 肖雪峰, 等. 絮凝法去除水中藻类研究进展[J]. 化学研究与应用, 2017, 29(2): 153-159. [4] 李靖. 改性黏土对几种藻华生物的去除作用及其生态环境效应[D]. 北京: 中国科学院大学, 2017. [5] 晏全香, 袁继祖. 黏土矿物处理水体富营养化藻类的研究进展[J]. 污染防治技术, 2008, 21(4): 26-29. [6] PAN G, ZHANG M M, CHEN H, et al. Removal of cyanobacterial blooms in Taihu Lake using local soils. Ⅰ. Equilibrium and kinetic screening on the flocculation of Microcystis aeruginosa using commercially available clays and minerals[J]. Environmental Pollution, 2006, 141(2): 195-200. [7] PARK T G, LIM W A, PARK Y T, et al. Economic impact, management and mitigation of red tides in Korea[J]. Harmful Algae, 2013, 30, Supplement 1: 131-143. [8] CONLEY D J, PAERL H W, ROBERT W, et al. Controlling eutrophication: nitrogen and phosphorus[J]. Science, 2009, 323: 1014-1015. [9] 马健荣, 邓建明, 秦伯强, 等. 湖泊蓝藻水华发生机理研究进展[J]. 生态学报, 2013, 33(10): 3020-3030. [10] PAERL H W, XU H, MC CARTHY M J, et al. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): the need for a dual nutrient (N&P) management strategy[J]. Water Research, 2011, 45: 1973-1983. [11] 秦伯强, 杨桂军, 马健荣, 等. 太湖蓝藻水华"暴发"的动态特征及其机制[J]. 科学通报, 2016, 61(7): 759-770. [12] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51: 325-346. [13] STEDMON C A, BRO R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial[J]. Limnology and Oceanography: Methods, 2008, 6: 572-579. [14] YUAN D H, ZHAO Y X, GUO X J, et al. Impact of hydrophyte decomposition on the changes and characteristics of dissolved organic matter in lake water[J]. Ecological Indicators, 2020, 116: 106482. [15] NODA I, OZAKI Y. Two-dimensional correlation spectroscopy: applications in vibrational and optical spectroscopy[M]. London: John Wiley & Sons, 2005. [16] 蔡若宇. Tanfloc改性硅藻土絮凝除藻效果及机理研究[D]. 赣州: 江西理工大学, 2021. [17] 中华人民共和国环境保护部. 水质总氮的测定: 碱性过硫酸钾消解紫外分光光度法: HJ 636—2012[S]. 北京: 中国环境科学出版社, 2012. [18] 国家环境保护局. 水质总磷的测定: 钼酸铵分光光度法: GB/T 11893—1989[S]. 北京: 中国环境科学出版社, 1989. [19] 国家环境保护局. 水质高锰酸盐指数的测定: GB/T 11892—1989[S]. 北京:中国标准出版社, 1991. [20] 徐彩平, 刘霞, 陈宇炜. 浮游植物叶绿素a浓度测定方法的比较研究[J]. 生态与农村环境学报, 2013, 29(4): 438-442. [21] 张哲海. 玄武湖蓝藻水华应急治理成效分析[J]. 污染防治技术, 2006, 19(5): 56-59. [22] 刘恋. 改性粘土对城市富营养化水体中藻类的絮凝去除研究[D].广州: 华南理工大学, 2010. [23] 梅卓华, 张哲海, 赵春霞, 等. 南京玄武湖蓝藻水华治理后水质和浮游植物的动态变化[J]. 湖泊科学, 2010, 22(1):44-48. [24] GUO X J, PENG Y Y, LI N X, et al. Effect of biochar-derived DOM on the interaction between Cu(Ⅱ) and biochar prepared at different pyrolysis temperatures[J]. Journal Hazardous Materials, 2021, 421: 126739. [25] YUAN D H, WANG H T, AN Y C, et al. Insight into the binding properties of carbamazepine onto dissolved organic matter using spectroscopic techniques during grassy swale treatment[J]. Ecotoxicology and Environmental Safety, 2019, 173: 444-451. [26] 杨艳. 三峡库区消落区土壤溶解有机质荧光特征研究[D]. 重庆: 重庆大学, 2010. [27] 郭旭晶, 彭涛, 王月, 等. 湖泊沉积物孔隙水溶解性有机质组成与光谱特性[J]. 环境化学, 2013, 32(1): 79-84. [28] HUR J, LEE B. Characterization of binding site heterogeneity for copper within dissolved organic matter fractions using two-dimensional correlation fluorescence spectroscopy[J]. Chemosphere, 2011, 83: 1603-1611. [29] 朱淮武. 有机分子结构波普解析[M]. 北京: 化学工业出版社, 2005. [30] GUO X J, HE X S, LI C W, et al. The binding properties of copper and lead onto compost-derived DOM using Fourier-transform infrared, UV-vis and fluorescence spectra combined with two-dimensional correlation analysis[J]. Journal Hazardous Materials, 2019, 365: 457-466.
点击查看大图
计量
- 文章访问数: 94
- HTML全文浏览量: 17
- PDF下载量: 10
- 被引次数: 0