PRINCIPLE OF A HIGH-TEMPERATURE GAS ANALYZER BASED ON INFRARED SPECTROSCOPY AND ITS APPLICATION IN IRON AND STEEL INDUSTRY
-
摘要: 随着中国对环境治理力度的不断加大,针对燃煤电厂、钢厂、水泥厂等的超低排放要求也日益严格规范。准确监测超低排放烟气中的各项污染物对污染控制设备运行和环境管理尤为重要。选取了适用于钢铁行业复杂烟气环境下的烟气分析仪,分别进行了实验室混合标气条件和某钢铁企业烟气条件下的烟气检测,并选取几种典型烟气分析仪进行比对分析。监测结果的趋势变化与在线监测结果具有较好的对应性,其绝对误差在可接受误差范围内。结果表明:高温红外分析仪具有较好的准确性和现场应用能力,能够满足检测需求。
-
关键词:
- 钢铁行业 /
- 烟气成分检测 /
- 烟气分析仪 /
- 9100HIR型烟气分析仪
Abstract: With the increasing effort of national environmental governance of China, the ultra-low emission requirements of coal-fired power plants, steel mills and cement plants are also increasingly strict. Accurate monitoring of various pollutants in ultra-low emission flue gas is particularly important for the operation of pollution control equipment and environmental management. Therefore, in order to meet the need for accurate analysis of flue gas in the iron and steel industry, this paper introduced the principle and application of a high-temperature infrared flue gas detector, 9100HIR. And the comparative test of the instrument and some typical flue gas analyzers in a steel enterprise were conducted. The trend changes of the monitoring results had good correspondence with the online monitoring result, and the absolute error was within the acceptable error range. The comparison results of various analysis methods showed that the 9100HIR analyzer had good accuracy and field application ability, and could meet the detection requirements. -
[1] 杨晓东,张玲,姜德旺, 等.钢铁工业废气及PM2.5排放特性与污染控制对策[J].工程研究-跨学科视野中的工程,2013,5(3):240-251. [2] 王曼,王永胜,闫兴钰, 等. 超低烟气连续监测技术[J]. 河北冶金, 2019(增刊1): 69-71. [3] 李倩文. 钢铁行业大气污染及防治对策[J]. 化工管理, 2020(19):64-66. [4] 沈伟亮. 钢铁工业污染物实施超低排放及对策思考[J]. 资源节约与环保, 2020(2):71. [5] 王亮,钟王君,王韬, 等. 钢铁工业污染物超低排放及对策思考[J]. 冶金动力, 2019(3):5-7,33. [6] 王新东, 侯长江, 田京雷. 钢铁行业烟气多污染物协同控制技术应用实践[J]. 过程工程学报, 2020, 20(9):997-1007. [7] 白煜,周祥宇,张晓丽,等.定电位电解法和非分散红外法测定误差分析[J].中国环保产业,2016(4):36-39. [8] 苏碧香.冷干法红外气体分析系统在污染物测量中的应用案例[J]. 集成电路应用, 2020, 37(12): 188-189. [9] JI D H, ZHOU M Q, WANG P C, et al. Deriving temporal and vertical distributions of methane in Xianghe using ground-based Fourier transform infrared and gas-analyzer measurements[J]. Advances in Atmospheric Sciences, 2020, 37(6):597-607. [10] 王建玲,马志伟,王川川,等.红外及色谱分析仪在化工生产中的应用[J].化工设计通讯,2020,46(9):66-67. [11] 赵金宝,赵珊,阎杰,等.紫外差分分析仪在烟气超低排放监测中的应用[J].仪器仪表用户,2018,25(4):58-61. [12] 黄成浩, 濮程. 非分散紫外吸收法低浓度氮氧化物分析仪性能测试[J].上海计量测试,2020,47(6):13-16,19. [13] 李晓峰, 陈梁, 董拯, 等. 基于非分散紫外吸收法SO2超低量程烟气分析仪的研制及其应用[J].化学分析计量, 2016, 25(3): 101-105. [14] 李铮. 连续气体分析系统在精炼炉中的应用[J].冶金设备,2020(增刊1):68-69. [15] 周红, 肖淞, 张晓星, 等. 基于紫外差分吸收光谱的痕量SO2气体定量检测[J]. 中国电机工程学报, 2017, 37(19):5812-5820. [16] 周洁, 陈晓虎. 高温NO气体紫外吸收截面压力碰撞增宽效应的实验研究[J]. 环境科学学报, 2006, 26(6):1006-1010. [17] 刘志锋. 基于非分散红外技术的SO2在线检测影响因素研究[D].北京:北方工业大学,2020. [18] High SNR readout method for double layered MO disk with single wavelength LASER beam[J].日本応用磁気学会誌,1999,(23): 221-224. [19] CHEN T, SU G F, YUAN H Y. In situ gas filter correlation: photoacoustic CO detection method for fire warning[J]. Sensors & Actuators: B. Chemical,2004,109(2):233-237. [20] SHIM J H, HUANG H, CHAO C C. Atomic layer deposition of Yttria-stabilized zirconia for solid oxide fuel cells[J]. Chemistry of Materials,2007,19(15):3850-3854. [21] 朱泽军,李红亮,李峰,等.超低排放的SO2/NOx便携式烟气分析仪应用综述[J].分析仪器,2019(2):1-7. [22] CHANG C L, NIEN S H, HSU C S, et al. Preparation of BaZr_(0.1)Ce_(0.7)Y_(0.2)O_(3-δ) based solid oxide fuel cells with anode functional layers by tape casting[J].Fuel Cells,2011,11(2):178-183. [23] CLAUDIA C, SYED A A. Constrained and non-constrained sintering of plasma-sprayed zirconia based electrolytes for SOFCs[J]. Advances in Science and Technology, 2011, 998:263-268. [24] 王晓朵,刘华,李云鹏, 等.光谱仪光源双光束准直的自由曲面透镜[J].光子学报,2016,45(8):32-37. [25] 高强. 基于红外前向散射能见度仪的研制[D]. 天津:天津大学, 2016. [26] SUN Y W,ZENG Y,LIU W Q, et al.Cross-interference correction and simultaneous multi-gas analysis based on infrared absorption[J]. Chinese Physics B,2012,21(9):168-175. [27] DINH T V, AHN J W, CHOI I Y, et al. A novel bandpass filter for the analysis of carbon monoxide using a non-dispersive infrared technique[J]. Atmosphere, 2018,9(12):495. [28] 北京乐氏联创科技有限公司. 一种高温红外烟气分析方法: 202010976827.1[P]. 2020.
点击查看大图
计量
- 文章访问数: 87
- HTML全文浏览量: 8
- PDF下载量: 5
- 被引次数: 0