RESEARCH ON VOCs EMISSION CHARACTERISTICS AND OZONE FORMATION POTENTIAL OF TYPICAL PETROCHEMICAL PLANTS
-
摘要: 聚焦某石化企业芳烃、烯烃及炼油生产区域,针对芳烃连续重整、芳烃制氢、烯烃催化裂解和炼油常减压蒸馏4套活性VOCs组分较多的生产装置,开展了装置VOCs排放特征研究。使用苏玛罐对装置无组织逸散环节VOCs废气进行采集,并通过气相色谱-质谱联用仪(GC-MS)对106种VOCs组分进行定性定量分析,采用VOCs最大增量反应活性(MIR)来计算各装置VOCs排放对大气中O3生成的贡献。结果表明:烷烃是4套装置的VOCs特征组分,质量分数为42.17%~93.57%。烯烃裂解装置卤代烃质量分数为30.08%,常减压蒸馏装置芳香烃质量分数为27.83%;丙烷、乙烷、1,2-二氯乙烷和正庚烷是石化行业企业VOCs排放特征物种;4套装置臭氧生成贡献OFP为0.49~30.05 mg/m3,其顺序为炼油常减压蒸馏装置(30.05 mg/m3)>芳烃制氢装置(4.21 mg/m3)>芳烃连续重整装置(2.57 mg/m3)>烯烃裂解装置(0.49 mg/m3);排名前20位的物种对OFP的贡献率为87.89%~94.47%,异丁烷、丙烷、正丁烷和对,间-二甲苯是行业的关键活性物种。研究显示,石化行业不同生产装置所排放的VOCs组分复杂不一,对臭氧生成贡献也存在显著性差异,建议根据研究筛选出的关键活性组分针对性制定石化行业企业VOCs减排策略。Abstract: Focusing on the aromatics, olefins and refining production areas of a petrochemical enterprise, a study was conducted to characterize VOCs emission from four production units with a high number of active VOCs components: aromatics continuous reforming, aromatics hydrogen production, olefins catalytic cracking and refining normal-reduced pressure distillation. The VOCs emission from the disorganized fugitive links of the units was collected using Suma canisters, and the 106 VOCs components were analyzed qualitatively and quantitatively by gas chromatography-mass spectrometry (GC-MS), and the maximum incremental reactivity (MIR) of VOCs was used to calculate the contribution of VOCs emissions from each unit to the atmospheric O3 generation. The results showed that alkanes were the featured VOCs components in the four units, with the mass fraction share ranging from 42.17% to 93.57%. The mass fraction of halogenated hydrocarbons in the olefin cracking unit accounted for 30.08%, and the mass fraction of aromatic hydrocarbons in the normal-reduced pressure distillation unit accounted for 27.83%; propane, ethane, 1,2-dichloroethane and n-heptane were the featured species of VOCs emission from petrochemical industry enterprises; the OFP of the four units ranged from 0.49 to 30.05 mg/m3, in a descending order of refining normal reduced-pressure distillation unit (30.05 mg/m3)>aromatics hydrogen production unit (4.21 mg/m3)>aromatics continuous reforming unit (2.57 mg/m3)>olefin cracking unit (0.49 mg/m3); the contribution of the top 20 species to OFP ranged from 87.89% to 94.47%, with isobutane, propane, n-butane and p,m-xylene as the key active species in the industry. The study showed that the VOCs emitted from different production units of petrochemicals had different complex components and significant differences in their contribution to ozone generation. It is recommended to develop targeted VOCs emission reduction strategies for industry enterprises based on the screened key reactive components.
-
[1] 张鸿宇,王媛,卢亚灵,等.我国臭氧污染控制分区及其控制类型识别[J/OL].中国环境科学:1-10[2021-09-09]. https://doi.org/10.19674/j.cnki.issn1000-6923.20210630.001. [2] 罗锦程,丁问薇.40年我国大气污染问题的回顾与展望——访中国工程院院士、北京大学环境科学与工程学院教授唐孝炎[J].环境保护,2018,46(20):11-13. [3] RUSSELL A, MILFORD J, BERGIN M S, et al. Urban ozone control and atmospheric reactivity of organic gases[J]. Science,1995, 269(5223): 491-495. [4] SHAO M, LU S H, LIU Y, et al. Volatile organic compounds measured in summer in Beijing and their role in ground-level ozone formation[J]. Journal of Geophysical Research, 2009, 114(D2): 1-13. [5] SATO K, TAKAMI A, ISOZAKI T, et al. Mass spectrometric study of secondary organic aerosol formed from the photo-oxidation of aromatic hydrocarbons[J]. Atmospheric Environment, 2010, 44(8): 1080-1087. [6] ODUM J R, JUNGKAMP T P W, GRIFFIN R J, et al. The atmospheric aerosol-forming potential of whole gasoline vapor[J]. Science, 1997, 276(5309): 96-99. [7] YUAN B, HU W W, SHAO M, et al. VOC emissions, evolutions and contributions to SOA formation at a receptor site in Eastern China[J]. Atmospheric Chemistry and Physics, 2013, 13(17): 8815-8832. [8] 吕大器,陆思华,谭鑫,等.典型地方炼化企业VOCs排放特征及其对二次污染生成的贡献[J].环境科学研究,2021,34(1):103-113. [9] 刘志阳,廖程浩,孙西勃,等.石化企业挥发性有机物排放量核算常见问题分析[J].化工环保,2020,40(5):546-550. [10] 冯云霞,贾润中,肖安山,等.石化企业挥发性有机物成分谱构建及溯源解析[J].石油炼制与化工,2020,51(1):92-96. [11] 王韵杰,张少君,郝吉明.中国大气污染治理:进展·挑战·路径[J].环境科学研究,2019,32(10):1755-1762. [12] 张庆阳,郭家康.打赢蓝天保卫战:国外大气污染防治及其借鉴[J].世界环境,2017(6):51-54. [13] 陈鹏, 张月, 张梁,等. 汽车维修行业挥发性有机物排放特征及大气化学反应活性[J]. 环境科学, 2021,42(8):3604-3614. [14] 王银海, 董莉, 刘景洋,等. 杨斌.典型溶剂使用行业O3和SOA生成潜势分析[J]. 现代化工, 2020, 40(11): 14-19. [15] 田亮, 魏巍, 程水源,等. 典型有机溶剂使用行业VOCs成分谱及臭氧生成潜势[J]. 安全与环境学报, 2017, 17(1): 314-320. [16] 方莉, 刘继业, 聂磊,等. 北京市典型汽修企业VOCs排放特征与臭氧影响分析[J]. 环境工程, 2020, 38(10): 146-150,155. [17] 高爽, 李时蓓, 伯鑫,等. 铸造行业挥发性有机物排放成分谱及影响[J]. 环境科学, 2021,42(4):1649-1659. [18] 刘厚凤, 李明燕, 许鹏举,等. 某沿海城市典型行业NMHCs排放特征及对二次污染物生成潜势研究[J]. 环境科学学报, 2021, 41(2): 395-405. [19] 李婷婷, 梁小明, 卢清,等. 泡沫塑料鞋制造区VOCs污染特征及臭氧生成潜势[J]. 中国环境科学, 2020, 40(8): 3260-3267. [20] 马怡然, 高松, 王巧敏,等. 合成树脂行业挥发性有机物排放成分谱及影响[J]. 中国环境科学, 2020, 40(8): 3268-3274. [21] LI R M, YAN Y L, PENG L, et al. Segment-based volatile organic compound emission characteristics from different types of coking plants in China[J]. Aerosol and Air Quality Research, 2020, 21(1): 1-12. [22] 程水源, 李文忠, 魏巍,等. 炼油厂分季节VOCs组成及其臭氧生成潜势分析[J]. 北京工业大学学报, 2013, 39(3): 438-444,46. [23] 陈文泰, 胡崑, 薛艳,等. 餐饮源挥发性有机物(VOCs)排放特征及对臭氧生成的影响[J]. 南京信息工程大学学报(自然科学版), 2020, 12(6): 647-655. [24] CARTER W P L, ATKINSON R. Computer modelling study of incremental hydrocarbon reactivity[J]. Environmental Science and Technology, 1989, 23(7): 864-880. [25] WANG L H, MILFORD J B, CARTER W P L. Reactivity estimates for aromatic compounds. Part 1. uncertainty in chamber-derived parameters[J]. Atmospheric Environment, 2000, 34(25): 4337-4348. [26] WHITTEN G Z, YARWOOD G. The ozone productivity of N-propyl Bromide: Part 2——an exception to the maximum incremental reactivity scale[J]. Journal of the Air and Waste Management Association, 2008, 58(7):891-901. [27] JIANG M Q, LU K D, SU R, et al. Ozone formation and key VOCs in typical Chinese city clusters[J].Chinese Science Bulletin 2018, 63: 1130-1141. [28] LU K D, ZHANG Y H, SU H, et al. Oxidant (O3+NO2) production processes and formation regimes in Beijing[J]. Journal of Geophysical Research, 2010, 115(D7): D10306. [29] TAN Z F, LU K D, JIANG M Q, et al. Exploring ozone pollution in Chengdu, southwestern China: a case study from radical chemistry to O3-VOC-NOx sensitivity[J]. Science of the Total Environment, 2018, 636: 775-786. [30] TAN Z F, LU K D, JIANG M Q, et al. Daytime atmospheric oxidation capacity in four Chinese megacities during the photochemically polluted season: a case study based on box model simulation[J]. Atmospheric Chemistry and Physics, 2019, 19(6): 3493-3513. [31] WANG H L. Characterization of volatile organic compounds (VOCs) and the impact on ozone formation during the photochemical smog episode in Shanghai, China[J]. Acta Scientiae Circumstantiae, 2015, 35(6): 1603-1611.
点击查看大图
计量
- 文章访问数: 87
- HTML全文浏览量: 12
- PDF下载量: 5
- 被引次数: 0