INFLUENCE OF WATER LEVEL DESCENDING OF LAYERED RESERVOIRS ON WATER QUALITY CHARACTERISTICS IN SOUTH CHINA
-
摘要: 近年来,广西中小型水库水位持续下降,突发性泛黑现象造成的水质问题引起了研究者的广泛关注,为探讨致黑关键因子铁(Fe)、锰(Mn)及硫化物在低水位运行状态下的迁移转化规律,充分运用2018—2021年的气象水文、水质数据等资料,结合低水位期长期分层采样数据,得出以下结论:入库流量长期低于出库流量导致水库蓄水量减少,低频低量降雨是水位持续走低的重要原因;低水位下热分层期底层水体平均溶解氧含量为1.79 mg/L,混合深度与水深比值随季节更替变化,水位越低(浅水区)越易达到完全混合状态;低水位促进水体Fe、Mn浓度增加(4.28,5.41 mg/L),分别达到2018年的3.67,3.68倍,加剧了沉积物污染释放;泛黑现象出现区域差异性,横向理化性质差异和污染物迁移是其重要原因,混合期和分层期季节性交替形成的水体环境是Fe、Mn蓄积及其迁移转化的关键驱动因素。Abstract: In recent years, the water level of reservoirs in Guangxi continued to decline. Water quality problems caused by the sudden blackening phenomenon attracted widespread attention. In order to explore the migration and transformation law of iron, manganese and sulfide under the low water level, we comprehensively investigated and analyzed meteorological, hydrological, and water quality data from 2018 to 2021 and continuous sampling data during the low water level period. The results showed that long-term inflow led to a decrease in the reservoir storage capacity. Water level fluctuation was mainly affected by low-frequency and low-volume rainfall. The average dissolved oxygen concentration of the bottom water in the thermal stratification period was 1.79 mg/L when the water depth descended to about 11 meters. Mixing depth of low water level area was closely related to completely mixed. Further analysis results indicate that the water level declining promoted the increase of Fe and Mn concentrations (4.28 mg/L and 5.41 mg/L), reaching 3.67, 3.68 times that of 2018. Horizontal physical and chemical property differences and the migration of pollutants occurred by thermal stratification led to the deterioration of water quality. In general, the blackening phenomenon presented regional differences. Seasonal alternation of the mixing period and stratification period is the driving factor for the accumulation, migration and transformation of Fe and Mn.
-
Key words:
- low water level /
- dissolved oxygen /
- transverse law /
- iron /
- manganese
-
[1] 黄宇波,杨霞,向波.水位变化对三峡水库小江蓝藻水华的影响[J].四川环境,2020,39(6):115-121. [2] 符坤,张六一,詹立坤,等.模拟氮沉降对三峡库区消落带土壤重金属的活化研究[J].环境影响评价,2021,43(1):85-90. [3] 朱广伟,赵林林,陈伟民,等.低水位运行对天目湖水库水质与生态的影响[J].生态与农村环境学报,2011,27(4):87-94. [4] 刘聚涛,温春云,韩柳,等.2012—2017年鄱阳湖水位变化与氮磷响应特征研究[J].环境污染与防治,2020,42(10):1274-1279. [5] JOUNG D J, LEDUC M, RAMCHARITAR B, et al. Winter weather and lake-watershed physical configuration drive phosphorus, iron, and manganese dynamics in water and sediment of ice-covered lakes[J]. Limnology and Oceanography,2017,62(4). [6] 王洪义,许静.低水位运行对太平池水库水环境的影响[J].东北水利水电,2015,33(2):57-58,70. [7] 王丽君,程瑞梅,肖文发,等.三峡库区水位消落植被土壤pH、阳离子含量随海拔及年际的动态特征[J].林业科学研究,2021,34(2):12-23. [8] 郭胜,李崇明,郭劲松,等.三峡水库蓄水后不同水位期干流氮、磷时空分异特征[J].环境科学,2011,32(5):1266-1272. [9] WANG Z X, WANG T X, LIU X L, et al. Water level decline in a reservoir: implications for water quality variation and pollution source identification[J]. International Journal of Environmental Research and Public Health,2020,17(7):2400. [10] 黄玥,黄志霖,肖文发,等.三峡水库水位调度对出库水质影响分析与水质预测[J].水资源与水工程学报,2020,31(4):78-85. [11] RONG N, LU W Z, ZHANG C Y, et al. In situ high-resolution measurement of phosphorus, iron and sulfur by diffusive gradients in thin films in sediments of black-odorous rivers in the Pearl River Delta region, South China[J]. Environmental Research,2020,189:109918. [12] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002. [13] 曾华献,李玉麟,王敬富,等.2009—2018年贵阳市阿哈水库水质时空变化特征分析[J].地球与环境,2021,49(4):367-374. [14] 朱雅,李一平,罗凡,等.我国南方桉树人工林区水库沉积物污染物的分布特征及迁移规律[J].环境科学,2020,41(5):2247-2256. [15] 黄廷林,谭欣林,李扬,等.金盆水库热分层特性及扬水曝气系统运行效果研究[J].西安建筑科技大学学报(自然科学版),2018,50(2):270-276,284. [16] RICHARD A, WILDMAN, JANET G. Hering. Potential for release of sediment phosphorus to Lake Powell (Utah and Arizona) due to sediment resuspension during low water level[J]. Lake and Reservoir Management,2011,27(4). [17] 吕晓龙,黄廷林,李楠,等.暴雨径流潜流过程及其对分层水库水质的影响[J].中国环境科学,2019,39(7):3064-3072. [18] PIOTR K, LILIANNA B. Influence of sedimentary Fe and Mn on the oxygenation of overlying waters in dam reservoirs[J]. Journal of Ecological Engineering,2018,19(5). [19] 蔡宇. 铁、锰和硫在沉积物—孔隙水界面的生物地球化学行为及其对砷迁移行为的影响[D].厦门:厦门大学,2019. [20] 丁庆章,刘学勤,张晓可.水位波动对长江中下游湖泊湖滨带底质环境的影响[J].湖泊科学,2014,26(3):340-348. [21] 孙祥,朱广伟,笪文怡,等.天目湖沙河水库热分层变化及其对水质的影响[J].环境科学,2018,39(6):2632-2640. [22] 盛昱凤,薛媛媛,戚丽萍,等.1960年以来太湖水位变化特征及影响因素分析[J].北京师范大学学报(自然科学版),2021,57(1):22-28. [23] KUNZ T J, DIEHL S. Phytoplankton, light and nutrients along a gradient of mixing depth: a field test of producer-resource theory[J]. Freshwater Biology,2003,48(6):1050-1063. [24] 卢金锁,李志龙.热分层对水库水质的季节性影响:以西安黑河水库为例[J].湖泊科学,2014,26(5):698-706. [25] MARTYNOVA M V. Time variations of the concentration of mobile forms of Fe, Mn, and P in silts of the Mozhaisk Reservoir[J]. Water Resources,2015,42(5):652-657. [26] 魏尧,李一平,朱雅,等.我国南方地区桉树叶浸泡对水库沉积物致黑元素分布及迁移转化的影响[J/OL].湖泊科学:1-12. [27] MUNGER Z W, CAYY C C, GERLING A B, et al. Effectiveness of hypolimnetic oxygenation for preventing accumulation of Fe and Mn in a drinking water reservoir[J]. Water Research,2016,106:1-14. [28] 孙昊苏,赵磊,胡国金.大宁调蓄水库低水位运行期水质保障措施[J].水资源开发与管理,2021(2):3-6,21.
点击查看大图
计量
- 文章访问数: 124
- HTML全文浏览量: 10
- PDF下载量: 6
- 被引次数: 0