CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳捕获-厌氧消化耦合技术回收城市污水能源研究进展

杨媛 邓伟航 胡以松 陈荣 王晓昌

杨媛, 邓伟航, 胡以松, 陈荣, 王晓昌. 碳捕获-厌氧消化耦合技术回收城市污水能源研究进展[J]. 环境工程, 2023, 41(5): 213-221. doi: 10.13205/j.hjgc.202305028
引用本文: 杨媛, 邓伟航, 胡以松, 陈荣, 王晓昌. 碳捕获-厌氧消化耦合技术回收城市污水能源研究进展[J]. 环境工程, 2023, 41(5): 213-221. doi: 10.13205/j.hjgc.202305028
YANG Yuan, DENG Weihang, HU Yisong, CHEN Rong, WANG Xiaochang. RESEARCH PROGRESS ON COUPLED CARBON CAPTURE-ANAEROBIC DIGESTION TECHNOLOGY FOR ENERGY RECOVERY FROM MUNICIPAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 213-221. doi: 10.13205/j.hjgc.202305028
Citation: YANG Yuan, DENG Weihang, HU Yisong, CHEN Rong, WANG Xiaochang. RESEARCH PROGRESS ON COUPLED CARBON CAPTURE-ANAEROBIC DIGESTION TECHNOLOGY FOR ENERGY RECOVERY FROM MUNICIPAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 213-221. doi: 10.13205/j.hjgc.202305028

碳捕获-厌氧消化耦合技术回收城市污水能源研究进展

doi: 10.13205/j.hjgc.202305028
基金项目: 

陕西省自然科学基础研究计划项目(2022JM-237)

中国博士后科学基金(2021MD703870)

详细信息
    作者简介:

    杨媛(1991-),女,博士,主要研究方向为膜法污水处理与资源化。383842205@qq.com

    通讯作者:

    胡以松(1986-),男,副教授,主要研究方向为MBR污水处理技术。jeffsion414@163.com

RESEARCH PROGRESS ON COUPLED CARBON CAPTURE-ANAEROBIC DIGESTION TECHNOLOGY FOR ENERGY RECOVERY FROM MUNICIPAL WASTEWATER

  • 摘要: 在"双碳"战略驱动下,城市污水处理模式逐渐从"以能耗换水质"转变为"能源资源回收利用"。污水中富含蛋白质、脂质、多糖等有机物,通过物化/生化方式进行碳捕获,可获得富含有机物的浓缩产物,有效提升后续厌氧消化的能源回收效率。概述了典型碳捕获工艺[高负荷活性污泥(HRAS)法、化学强化一级处理(CEPT)和膜分离技术等]的捕获机制,从COD去除率、碳捕获率、污水浓缩程度等角度对典型碳捕获工艺进行了比较与总结,分析了碳捕获产物性质和能源回收途径,探讨了富碳浓缩产物的厌氧产甲烷效能及其影响因素,并通过解析工程化应用案例展示了"碳捕获-厌氧消化"耦合技术的优势和前景。最后,指出了工程应用中存在的问题、挑战及未来展望。
  • [1] 郝晓地, 方晓敏, 李季, 等. 污水碳中和运行潜能分析[J]. 中国给水排水,2018,34(10):11-16.
    [2] GUVEN H, DERELI R K, OZGUN H, et al. Towards sustainable and energy efficient municipal wastewater treatment by up-concentration of organics[J]. Progress in Energy and Combustion Science, 2019,70: 145-168.
    [3] LU L, GUEST J S, PETERS C A, et al. Wastewater treatment for carbon capture and utilization[J]. Nature Sustainability. Nature Publishing Group, 2018,1(12): 750-758.
    [4] 孙意忱. 温度对高负荷活性污泥工艺的影响研究[D]. 郑州:郑州大学, 2020.
    [5] LIANG M X, LU X T, LIU P B, et al. Tapping the energy potential from wastewater by integrating high-rate activated sludge process with anaerobic membrane bioreactor[J]. Journal of Cleaner Production, 2022, 333: 130071.
    [6] DOLEJŠ P, VARGA Z, LUZA B, et al. Maximizing energy recovery from wastewater via bioflocculation-enhanced primary treatment: a pilot scale study[J]. Environmental Technology, 2021, 42(14): 2229-2239.
    [7] CARRERA J, CARBÓ O, DOÑATE S, et al. Increasing the energy production in an urban wastewater treatment plant using a high-rate activated sludge: pilot plant demonstration and energy balance[J]. Journal of Cleaner Production, 2022, 354: 131734.
    [8] WAN J F, GU J, ZHAO Q, et al. COD capture: A feasible option towards energy self-sufficient domestic wastewater treatment[J]. Scientific Reports, 2016, 6(1): 1-9.
    [9] HE Q, WANG H, XU C, et al. Feasibility and optimization of wastewater treatment by chemically enhanced primary treatment (CEPT): a case study of Huangshi[J]. Chemical Speciation and Bioavailability, 2016, 28(1/2/3/4): 209-215.
    [10] LEE C S, ROBINSON J, CHONG M F. A review on application of flocculants in wastewater treatment[J]. Process Safety and Environmental Protection. Institution of Chemical Engineers, 2014: 489-508.
    [11] HAMEED Y T, IDRIS A, HUSSAIN S A, et al. A tannin-based agent for coagulation and flocculation of municipal wastewater as a pretreatment for biofilm process[J]. Journal of Cleaner Production, 2018, 182: 198-205.
    [12] PATRICIA M F, PURWONO, BUDIHARDJO M A. Dose of biocoagulant-mixing rate combinations for optimum reduction of COD in wastewater[C]//E3S Web of Conferences. EDP Sciences, 2018, 31: 03018.
    [13] MUNIZ G L, BORGES A C, DA SILVA T C F, et al. Chemically enhanced primary treatment of dairy wastewater using chitosan obtained from shrimp wastes: optimization using a Doehlert matrix design[J]. Environmental Technology (United Kingdom), 2022, 43(2): 237-254.
    [14] VERMA M, NARESH KUMAR R. Can coagulation-flocculation be an effective pre-treatment option for landfill leachate and municipal wastewater co-treatment?[J]. Perspectives in Science, 2016, 8: 492-494.
    [15] 郭超然, 黄勇, 朱文娟, 等. 城市污水有机物回收:捕获技术研究进展[J]. 化工进展, 2020, 40(3): 1619-1633.
    [16] NACHEVA P M, BUSTILLOS L T, CAMPEROS E R, et al. Characterization and coagulation-flocculation treatability of Mexico City wastewater applying ferric chloride and polymers[J]. Water Science and Technology, 1996,34(3/4): 235-247.
    [17] BEZIRGIANNIDIS A, PLESIA-EFSTATHOPOULOU A, NTOUGIAS S, et al. Combined chemically enhanced primary sedimentation and biofiltration process for low cost municipal wastewater treatment[J]. Journal of Environmental Science and Health, Part A, 2019, 54(12): 1227-1232.
    [18] BHUPTAWAT H, FOLKARD G K, CHAUDHARI S. Innovative physico-chemical treatment of wastewater incorporating Moringa oleifera seed coagulant[J]. Journal of Hazardous Materials, 2007, 142(1/2): 477-482.
    [19] MOORE C, GAO W, FATEHI P. Cationic lignin polymers as flocculant for municipal wastewater[J]. Polymers, 2021, 13(22): 3871.
    [20] MERIç S, GUIDA M, ANSELMO A, et al. Microbial and COD removal in a municipal wastewater treatment plant using coagulation flocculation process[J]. Journal of Environmental Science and Health, Part A, 2002, 37(8): 1483-1494.
    [21] ZHENG L, FENG H, LIU Y Q, et al. Chemically enhanced primary treatment of municipal wastewater with ferrate(Ⅵ)[J]. Water Environment Research, 2021, 93(6): 817-825.
    [22] FAUST L, TEMMINK H, ZWIJNENBURG A, et al. High loaded MBRs for organic matter recovery fromsewage: effect of solids retention time on bioflocculation and on the role of extracellular polymers[J]. Water Research, 2014, 56: 258-266.
    [23] AKANYETI I, TEMMINK H, REMY M, et al. Feasibility of bioflocculation in a high-loaded membrane bioreactor for improved energy recovery from sewage[J]. Water Science and Technology, 2010, 61(6): 1433-1439.
    [24] WANG Z W, ZHENG J J, TANG J X, et al. A pilot-scale forward osmosis membrane system for concentrating low-strength municipal wastewater: performance and implications[J]. Scientific Reports, 2016, 6(1): 1-11.
    [25] XIONG J Q, YU S C, HU Y S, et al. Applying a dynamic membrane filtration (DMF)process for domestic wastewater preconcentration: organics recovery and bioenergy production potential analysis[J]. Science of the Total Environment, 2019, 680: 35-43.
    [26] 万立国, 林巧, 张丽君, 等. 溶解氧对HLB-MR反应器内有机物的生物絮凝影响[J]. 中国环境科学, 2019, 39(8): 3340-3346.
    [27] DAI W C, XU X C, YANG F L. High-rate contact stabilization process-coupled membrane bioreactor for maximal recovery of organics from municipal wastewater[J]. Water, 2018, 10(7): 878.
    [28] ODEY E A, WANG K J, LI Z F, et al. Optimization of the enhanced membrane coagulation reactor for sewage concentration efficiency and energy recovery[J]. Environmental Technology, 2018, 39(24): 3149-3158.
    [29] GONG H, JIN Z Y, XU H, et al. Redesigning C and N mass flows for energy-neutral wastewater treatment by coagulation adsorption enhanced membrane (CAEM)-based pre-concentration process[J]. Chemical Engineering Journal, 2018, 342: 304-309.
    [30] GONG H, JIN Z Y, XU H, et al. Enhanced membrane-based pre-concentration improves wastewater organic matter recovery: Pilot-scale performance and membrane fouling[J]. Journal of Cleaner Production, 2019, 206: 307-314.
    [31] TABOADA-SANTOS A, RIVADULLA E, PAREDES L, et al. Comprehensive comparison of chemically enhanced primary treatment and high-rate activated sludge in novel wastewater treatment plant configurations[J]. Water Research, 2020, 169: 115258.
    [32] BEZIRGIANNIDIS A, CHATZOPOULOS P, TSAKALI A, et al. Renewable energy recovery from sewage sludge derived from chemically enhanced precipitation[J]. Renewable Energy, 2020, 162: 1811-1818.
    [33] JANG H M, SHIN J, CHOI S, et al. Fate of antibiotic resistance genes in mesophilic and thermophilic anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge[J]. Bioresource Technology, 2017, 244: 433-444.
    [34] ZHUANG H C, AMY TAN G Y, JING H D, et al. Enhanced primary treatment for net energy production from sewage: the genetic clarification of substrate-acetate-methane pathway in anaerobic digestion[J]. Chemical Engineering Journal, 2022, 431:133416.
    [35] JETTEN M S M, HORN S J, van LOOSDRECHT M C M. Towards a more sustainable municipal wastewater treatment system[J]. Water Science and Technology, 1997, 35(9): 171-180.
    [36] CHENG H, LI Y M, GUO G Z, et al. Advanced methanogenic performance and fouling mechanism investigation of a high-solid anaerobic membrane bioreactor (AnMBR) for the co-digestion of food waste and sewage sludge[J]. Water Research, 2020, 187: 116436.
    [37] NIE Y, CHEN R, TIAN X, et al. Advanced methanogenic performance ands on the bioenergy recovery from sewage treatment by anaerobic membrane bioreactor via a comprehensive study on the response of microbial community and methanogenic activity[J]. Energy, 2017, 139: 459-467.
    [38] GAIKWAD V T, MUNAVALLI G R. Turbidity removal by conventional and ballasted coagulation with natural coagulants[J]. Applied Water Science, 2019, 9(5): 1-9.
    [39] GAO Y, FANG Z, LIANG P, et al. Anaerobic digestion performance of concentrated municipal sewage by forward osmosis membrane: focus on the impact of salt and ammonia nitrogen[J]. Bioresource Technology, 2019, 276: 204-210.
    [40] GAO Y, FANG Z, LIANG P, et al. Direct concentration of municipal sewage by forward osmosis and membrane fouling behavior[J]. Bioresource Technology, 2018, 247: 730-735.
    [41] FAUST L, TEMMINK H, ZWIJNENBURG A, et al. Effect of dissolved oxygen concentration on the bioflocculation process in high loaded MBRs[J]. Water Research, 2014, 66: 199-207.
    [42] YANG Y, HU Y S, DUAN A, et al. Characterization of preconcentrated domestic wastewater toward efficient bioenergy recovery: applying size fractionation, chemical composition and biomethane potential assay[J]. Bioresource Technology, 2021, 319: 124144.
    [43] CAGNETTA C, SAERENS B, MEERBURG F A, et al. High-rate activated sludge systems combined with dissolved air flotation enable effective organics removal and recovery[J]. Bioresource Technology, 2019, 291: 121833.
    [44] DIAMANTIS V, VERSTRAETE W, EFTAXIAS A, et al. Sewage pre-concentration for maximum recovery and reuse at decentralized level[J]. Water Science and Technology, 2013, 67(6): 1188-1193.
    [45] CHUN M, KIM ·hyoungho, BAE ·hyokwan. Biochemical methane potential of chemically enhanced primary treatment sludge for energy-independence of sewage treatment plants[J]. Journal of Korean Society on Water Environment, 2020, 36(4): 322-331.
    [46] ANSARI A J, HAI F I, PRICE W E, et al. Assessing the integration of forward osmosis and anaerobic digestion for simultaneous wastewater treatment and resource recovery[J]. Bioresource Technology, 2018, 260: 221-226.
    [47] 蒋柱武, 方骁, 张亚雷, 等. 生活污水厌氧处理研究进展[J]. 同济大学学报(自然科学版), 2005, 33(4):489-493.
    [48] JIN Z Y, GONG H, TEMMINK H, et al. Efficient sewage pre-concentration with combined coagulation microfiltration for organic matter recovery[J]. Chemical Engineering Journal, 2016, 292: 130-138.
    [49] KIMURA K, YAMAKAWA M, HAFUKA A. Direct membrane filtration (DMF) for recovery of organic matter in municipal wastewater using small amounts of chemicals and energy[J]. Chemosphere, 2021, 277: 130244.
    [50] HAFUKA A, TAKAHASHI T, KIMURA K. Anaerobic digestibility of up-concentrated organic matter obtained from direct membrane filtration of municipal wastewater[J]. Biochemical Engineering Journal, 2020, 161: 107692.
    [51] FERRARI F, BALCAZAR J L, RODRIGUEZ-RODA I, et al. Anaerobic membrane bioreactor for biogas production from concentrated sewage produced during sewer mining[J]. Science of the Total Environment, 2019, 670: 993-1000.
    [52] TUYET N T, DAN N P, VU N C, et al. Laboratory-scale membrane up-concentration and co-anaerobic digestion for energy recovery from sewage and kitchen waste[J]. Water Science and Technology, 2016, 73(3): 597-606.
    [53] JIMENEZ J, MILLER M, BOTT C, et al. High-rate activated sludge system for carbon management - Evaluation of crucial process mechanisms and design parameters[J]. Water Research, 2015, 87: 476-482.
    [54] WETT B, BUCHAUER K, FIMML C. Energy self-sufficiency as a feasible concept for wastewater treatment systems[C]//IWA Leading Edge Technology Conference. Sing-pore: Asian Water, 2007, 21:21-24.
    [55] HAO X D, LIU R B, HUANG X. Evaluation of the potential for operating carbon neutral WWTPs in China[J]. Water Research, 2015, 87: 424-431.
    [56] VERSPRILLE A I, STEIN T. The A-B process: a novel tow stage wastewater treatment system[J]. Water science and technology, 1985, 17(2/3): 235-246.
    [57] JU F, WANG Y B, LAU F T K, et al. Anaerobic digestion of chemically enhanced primary treatment (CEPT) sludge and the microbial community structure[J]. Applied Microbiology and Biotechnology, 2016, 100(20): 8975-8982.
    [58] HARLEMAN D R F, MURCOTT S. The role of physical-chemical wastewater treatment in the mega-cities of the developing world[J]. Water Science and Technology, 1999,40: 75-80.
    [59] REN Z J, PAGILLA K. Pathways to Water Sector Decarbonization, Carbon Capture and Utilization[M]. London: IWA Publishing, 2022.
    [60] 耿丹丹, 雅锶. 污水厂变身城市花园[N]. 中国政府采购报, 2021-11-02(08).
    [61] SANCHO I, LOPEZ-PALAU S, ARESPACOCHAGA N, et al. New concepts on carbon redirection in wastewater treatment plants: a review[J]. Science of the Total Environment, 2019,647: 1373-1384.
    [62] LOTTI T, KLEEREBEZEM R, HU Z, et al. Pilot-scale evaluation of anammox-based mainstream nitrogen removal from municipal wastewater[J]. Environmental Technology, 2015, 36(9): 1167-1177.
    [63] REARDON R. Separate or combined sidestream treatment: that is the question[J]. Fla. Water Resour. J. 2014:52-58.
    [64] VENKATESH G, BRATTEBØ H. Environmental impact analysis of chemicals and energy consumption in wastewater treatment plants: case study of Oslo, Norway[J]. Water Science and Technology, 2011, 63(5): 1018-1031.
    [65] 张婧怡, 高嵩, 宫徽, 等. 国外典型地下污水处理厂空间设计与节能措施案例分析[J]. 给水排水, 2018, 44(3): 136-142.
    [66] 郝晓地, 赵梓丞, 李季, 等. 污水处理厂的能源与资源回收方式及其碳排放核算: 以芬兰Kakolanmäki污水处理厂为例[J]. 环境工程学报, 2021, 15(9): 2849-2858.
  • 加载中
计量
  • 文章访问数:  178
  • HTML全文浏览量:  11
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-27

目录

    /

    返回文章
    返回