RESEARCH PROGRESS OF IN-SITU REMEDIATION OF SEDIMENT WITH PERSISTENT ORGANIC POLLUTANTS
-
摘要: 近年来,我国河湖底泥中有机污染问题日益突出,底泥中存在大量的有机污染物,如氯酚类、多环芳烃类以及多氯联苯类等,若不及时处理,释放到上覆水环境中会对生态环境、人体健康和社会经济的可持续发展产生严重危害。目前,针对河湖底泥有机污染的修复技术已成为环境治理领域的重要研究方向。当前底泥有机污染的治理技术包括原位修复技术和异位修复技术,而原位修复技术已成为治理河湖底泥有机污染的主要技术手段。主要介绍了底泥原位修复技术中的活性覆盖技术、生物修复技术、化学修复技术以及联合修复技术及其研究进展,并对各种原位修复技术的发展和应用前景提出了展望,以期为后续对原位修复底泥技术的研究与应用提供参考。Abstract: In recent years, the sediment organic pollution problems in rivers and lakes are increasingly prominent in China, and there are various organic pollutants in sediment, such as chlorine phenolic, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls, etc., posing threat to the ecological environment, human health. Recently, in-situ remediation technology for river and lake sediments emerged as a significant research direction in environmental governance. At present, the remediation technology of organic pollution sediment includes in situ remediation and ectopic remediation, and in situ remediation technology has become the main technical means of treating pollution of the river and lake sediment. In this article, the research progress of active covering technology, bioremediation technology, chemical remediation technology and combined remediation technology in in-situ remediation technology is introduced, and the development and application of in-situ remediation technology are also proposed, hoping to provide guidance for the follow-up research and application of in-situ remediation technology for sediment.
-
Key words:
- deposit /
- sustainable development /
- in-situ remediation /
- organic pollutant /
- treatment technology
-
[1] YANG Y Y, YE S J, ZHANG C, et al. Application of biochar for the remediation of polluted sediments[J]. Journal of Hazardous Materials, 2021, 404(15): 124052. [2] HELENA I G, DIAS-FERREIRA C, ALEXANDRA, et al. Overview of in situ and ex situ remediation technologies for PCB-contaminated soils and sediments and obstacles for full-scale application[J]. Science of the Total Environment, 2013, 445/446(15): 237-260. [3] OLISAH C, JANINE B A, RUBIDGE G. The state of persistent organic pollutants in South African estuaries: a review of environmental exposure and sources[J]. Ecotoxicology and Environmental Safety, 2021, 219: 112316. [4] PADHYE L P, TEZEL U. Fate of environmental pollutants[J]. Water Environmental Research, 2014, 86(10): 1714-1773. [5] 国家履行斯德哥尔摩公约工作协调组办公室. 中华人民共和国履行《关于持久性有机污染物的斯德哥尔摩公约》国家实施计划[M]. 北京:中国环境科学出版社, 2008. [6] 王胜凡,庄毅璇,王磊,等. 河道污染底泥处理技术[J]. 广东化工, 2021, 48(1): 82-83. [7] CAI C Y, ZHAO M H, YU Z, et al. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: a review[J]. Science of the Total Environment, 2019, 662(20): 205-217. [8] 国家环境保护总局.2020年中国环境状况公报[R].2020. [9] 张旭. 黄河流域不同季节水相、沉积物和土壤中多环芳烃分布、来源和风险评价[D]. 北京: 北京交通大学, 2017. [10] 陈敏, 徐爱兰. 长江口区饮用水源半挥发性有机污染物污染状况[J]. 人民长江,2011, 42(1): 13-17. [11] 那金. 淮河流域浅层地下水中有机污染物特征及成因研究[D]. 常州:常州大学,2009. [12] 陆华, 陆徐荣, 杨磊, 等. 淮河流域江苏平原区浅层地下水污染分析[J]. 环境监测管理与技术,2014, 26(5): 19-23. [13] 詹志薇. 珠江三角洲典型地区地下水有机污染物环境影响及其脆弱性评价[D]. 广州: 华南农业大学, 2016. [14] 丁辉,李鑫钢,孙贻超,等. 海河干流有机污染问题浅议[J]. 海河水利,2005(2): 18-20. [15] 吕佳佩. 辽河水环境中典型持久性有机污染物的污染特征硏究[D]. 北京:中国环境科学研究院,2015. [16] 万晨洁, 余益军, 张莉, 等. 太湖有机污染物的生态风险研究[J]. 南京大学学报, 2017, 53(2): 256-264. [17] 贺勇,徐福留,何伟, 等. 巢湖生态系统中微量有机污染物的研究进展[J]. 生态毒理学报, 2016, 11(2): 111-123. [18] 高秋生, 焦立新, 杨柳, 等. 白洋淀典型持久性有机污染物污染特征与风险评估[J]. 环境科学, 2018, 39(4): 1616-1627. [19] 孙盼盼. 滇北小流域土壤和沉积物中持久性有机污染物的地球化学特征[D]. 南京: 南京师范大学, 2017. [20] 董祎波,吴慧芳,张国庆, 等. 河湖底泥污染物及其原位修复技术的研究进展[J]. 广东水利水电, 2020(12): 13-18. [21] 王华鹏,李金城,韦春满,等. 水体沉积物原位修复技术与进展[J]. 中国农村水利水电, 2021(5): 87-93. [22] BONAGLIA S, RAMO R, MARZOCCHI U, et al. Capping with activated carbon reduces nutrient fluxes, denitrification and meiofauna in contaminated sediments[J]. Water Research, 2019, 148(1): 515-525. [23] ZIMMERMAN J R, GHOSH U M, MILLWARD R N, et al. Addition of carbon sorbents to reduce PCB and PAH bioavailability in marine sediments: physicochemical tests[J]. Environmental Science & Technology, 2004, 38(20): 5458-5464. [24] CHOI Y J, CHO Y M, LUTHY R G. In situ sequestration of hydrophobic organic contaminants in sediments under stagnant contact with activated carbon. 1. column studies[J]. Environmental Science & Technology, 2014,48(3): 1835-1842. [25] 韩梅. 活性炭纤维对底泥中芳香族有机污染物的吸附性能研究[D]. 北京:中国地质大学, 2017. [26] SARAH J, MORTEN S, GORANS S, et al. Capping efficiency of various carbonaceous and mineral materials for in situ remediation of polychlorinated dibenzo-p-dioxin and dibenzofuran contaminated marine sediments: sediment-to-water fluxes and bioaccumulation in boxcosm tests[J]. Environmental Science & Technology, 2012, 46(6): 3343-3351. [27] 张丽,宣李,黎晓宁, 等. 磁性活性炭原位修复养殖底泥中多溴联苯醚(PBDEs)的研究[J].农业环境科学学报, 2020, 39(8): 1818-1827. [28] LOU L P, WU B B, WANG L N, et al. Sorption and ecotoxicity of pentachlorophenol polluted sediment amended with rice-straw derived biochar[J]. Bioresource Technology, 2011, 102(5): 4036-4041. [29] 周岩梅, 杨舒然, 孟晓东, 等. 生物质炭对沉积物中有机污染物的吸附固定作用机理[J]. 环境科学研究, 2019, 32(1): 43-51. [30] 毕磊,邱凌峰. 污染底泥修复治理技术[J]. 中国环保产业, 2010(11): 32-35. [31] 申粤, 聂煜东, 张贤明, 等. 底泥原位覆盖材料选择及应用研究进展[J]. 环境污染与防治, 2021, 43(7): 898-903. [32] CHEN B L, CHEN Z M, LV S F. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate[J]. Bioresource Technology, 2011, 102:716-723. [33] MIQUEL L, YORA T. Effects of lanthanum and lanthanum-modified clay on growth, survival and reproduction of Daphnia magna[J]. Water Research, 2010, 44: 309-319. [34] LUZ E B, YOAV B. Immobilized microalgae for removing pollutants: Review of practical aspects[J]. Bioresource Technology, 2010, 101: 1611-1627. [35] 刘飞,段登选,李敏,等. 菹草和螺蛳对养殖池塘水体及底泥氮、磷等净化效果研究[J]. 海洋湖沼通报,2016, 6: 107-112. [36] 唐艳, 胡小贞, 卢少勇. 污染底泥原位覆盖技术综述[J]. 生态学杂志, 2007, 26(7): 1125-1128. [37] GARBACIAK S, SPADARO P, THORNURG T, et al. Sequential risk mitigation and the role of natural recovery in contaminated sediment projects[J]. Water Science & Technology, 1998, 37(6/7): 331-336. [38] HASSANSHAHIAN M, EMTIAZI G, CARUSO G, et al. Bioremediation (bioaugmentation/biostimulation) trials of oil polluted seawater: a mesocosm simulation study[J]. Marine Environmental Research, 2014,95: 28-38. [39] 罗义, 毛大庆. 生物修复概述及国内外研究进展[J]. 辽宁大学学报, 2003, 30(4): 298-302. [40] CHEN M J, SHIH K, HU M, et al. Biostimulation of indigenous microbial communities for anaerobic transformation of pentachlorophenol in paddy soils of southern China[J]. Journal of Agricultural and Food Chemistry, 2012, 60(12): 2967-2975. [41] AHN Y B, LIU F, FENNELL D E, et al. Biostimulation and bioaugmentation to enhance dechlorination of polychlorinated dibenzo-p-dioxins in contaminated sediments[J]. FEMS Microbiology Ecology, 2010, 66(2): 271-281. [42] 吴小菁, 刘宇, 毛彦青,等.共基质生物刺激技术去除城市河道底泥难降解有机污染物研究[J]. 水利水电技术, 2015, 46(2): 48-52. [43] TAM N F Y, WONG Y S. Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons[J]. Marine Pollution Bulletin, 2008, 57(6-12): 716-726. [44] ROCCHETTI L, DELLNNO A, BEOLCHINI F, et al. Changes of bacterial diversity during anaerobic bioremediation of harbor sediment[J]. Journal of Biotechnology, 2010, 150(S1): 222-223. [45] JACQUES R J S, OKEKE B C, BENTO F M, et al. Microbial consortium bio augmentation of a polycyclic aromatic hydrocarbons contaminated soil[J]. Bioresource Technology, 2008, 99(7): 2637-2643. [46] RICHARD B M. Phytoremediation of toxic elemental and organic pollutants[J]. Current Opinion in Plant Biology, 2000, 3(2): 153-162. [47] YAN Z S, GUO H Y, SONG T S, et al. Tolerance and remedial function of rooted submersed macrophyte Vallisneria spiralis to phenanthrene in freshwater sediments[J]. Ecological Engineering, 2011, 37(2): 123-127. [48] JIA H, LI J, LI Y, et al. The remediation of PAH contaminated sediment with mangrove plant and its derived biochars[J]. Journal of Environmental Management, 2020, 268(15): 110410. [49] MADHURANKHI G, POULOMI C, KOUSHIK M, et al. Bioaugmentation and biostimulation: a potential strategy for environmental remediation[J]. Journal of Microbiology & Experimentation, 2018, 6(5): 223-231. [50] VARADHAN A S, KHODADOUST A P, BRENNER R.C. Effect of biostimulation on the microbial community in PCB-contaminated sediments through periodic amendment of sediment with iron[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(10): 1691-1707. [51] YU K S H, WONG A H Y, YAU K W Y, et al. Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments[J]. Marine Pollution Bulletin, 2005, 51(8/9/10/11/12): 1071-1077. [52] PAYNE R B, MAY H D, SOWERS K R. Enhanced reductive dechlorination of polychlorinated biphenyl impacted sediment by bioaugmentation with a dehalorespiring bacterium[J]. Environmental Science & Technology, 2011, 45(20): 8772-8779. [53] 朱太旺,王志英. 千灯浦河道底质污染修复工程技术初探[J]. 水利建设与管理, 2014, 34(5): 71-73. [54] 张蕾,李红霞,马伟芳, 等. 黑麦草对复合污染河道疏浚底泥修复的研究[J]. 农业环境科学学报, 2006, 25(1): 107-112. [55] BANALA U K, DAS N P I, TOLETI S R. Microbial interactions with uranium: towards an effective bioremediation approach[J]. Environmental Technology & Innovation, 2021, 21: 101254. [56] JIANG D N, ZENG G M, HUANG D L, et al. Remediation of contaminated soils by enhanced nanoscale zero valent iron[J]. Environmental Research, 2018, 163: 217-227. [57] ZHANG W X. Nanoscale iron particles for environmental remediation: an overview[J]. Journal of Nanoparticle Research, 2003, 5(3/4):323-332. [58] 黄建军. 城市河道底泥营养盐释放及化学修复研究[D]. 天津:天津大学,2009. [59] 章萍,相明雪,马若男,等. 底泥就地稳定化中零价铁(Fe0)对有机污染物的作用及其对上覆水体水质的影响[J]. 湖泊科学, 2018, 30(5): 1218-1224. [60] 王新新, 张颖, 王元芬. 零价铁修复1, 3-二氯苯污染底泥[J]. 环境科学研究, 2009, 22(3): 289-293. [61] 董菊,贾宇彤,梅天雪,等.缓释型释氧剂在黑臭水体治理方面研究及应用[J]. 人民珠江,2019,40(10): 104-109. [62] PARK J S, SONG Y J, PARK K, et al. Facile fabrication of oxygen-releasing tannylated calcium peroxide nanoparticles[J]. Materials, 2020, 13: 3864. [63] LIN C W, WU C, TANG C T, et al. Novel oxygen releasing immobilized cell beads for bioremediation of BTEX contaminated water[J]. Bioresource Technology, 2012, 124(11): 45-51. [64] WU C,CHANG S,LIN C W.Improvement of oxygen release from calcium peroxide-polyvinyl alcohol beads by adding low-cost bamboo biochar and its application in bioremediation[J].Clean-Soil, Air, Water, 2015, 43(2): 287-295. [65] 杨洁, 华丹芸, 林逢凯, 等.释氧复合剂强化沉淀物中萘的生物降解研究[J].安全与环境学报, 2013, 13(5): 35-39. [66] 殷瑶, 朱煜. 过氧化钙缓释氧颗粒的制备及缓释氧过程调控[J]. 净水技术, 2019, 38(增刊1): 199-203. [67] AHEMAD M. Phosphate-solubilizing bacteria-assisted phytoremed-iation of metalliferous soils: a review[J]. 3 Biotech,2015,5:111-121. [68] 吕梦怡. 河道底泥的化学-生物协同修复效果及作用[D]. 天津:天津大学,2016. [69] CHEN K N, BAO C H, ZHOU W P. Ecological restoration in eutrophic Lake Wuli: a large enclosure experiment[J]. Ecological Engineering, 2009, 35(11): 1646-1655. [70] 姜世英.芘污染底泥的植物-微生物联合修复作用研究[D].沈阳:东北大学,2008. [71] 夏瑛铭. 河道底泥中荧蒽污染的植物-微生物联合修复研究[D]. 天津:天津工业大学,2017. [72] 杨建峡. 河道底泥原位生物修复及工程应用[D]. 重庆:重庆大学,2018. [73] DONG H R, LI L, LU Y, et al. Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: a review[J]. Environment International, 2019, 124: 265-277. [74] 刘晓伟.采用生物促生剂重建河涌底泥微生态系统的研究[D]. 广州:暨南大学, 2012. [75] PAN Y, LEUNG P Y, LI Y Y, et al. Enhancement effect of nanoscale zero-valent iron addition on microbial degradation of BDE-209 in contaminated mangrove sediment[J]. Science of the Total Environment, 2021, 781(10): 146702.
点击查看大图
计量
- 文章访问数: 203
- HTML全文浏览量: 32
- PDF下载量: 10
- 被引次数: 0