中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁元素强化厌氧氨氧化反应的研究进展

史晓北

史晓北. 铁元素强化厌氧氨氧化反应的研究进展[J]. 环境工程, 2023, 41(5): 231-236. doi: 10.13205/j.hjgc.202305030
引用本文: 史晓北. 铁元素强化厌氧氨氧化反应的研究进展[J]. 环境工程, 2023, 41(5): 231-236. doi: 10.13205/j.hjgc.202305030
SHI Xiaobei. RESEARCH PROGRESS ON IRON ENHANCED ANAEROBIC AMMONIA OXIDATION REACTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 231-236. doi: 10.13205/j.hjgc.202305030
Citation: SHI Xiaobei. RESEARCH PROGRESS ON IRON ENHANCED ANAEROBIC AMMONIA OXIDATION REACTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 231-236. doi: 10.13205/j.hjgc.202305030

铁元素强化厌氧氨氧化反应的研究进展

doi: 10.13205/j.hjgc.202305030
详细信息
    作者简介:

    史晓北(1980-),男,高级工程师,主要研究方向为市政工程电气设计与研发。7141565@qq.com

    通讯作者:

    史晓北(1980-),男,高级工程师,主要研究方向为市政工程电气设计与研发。7141565@qq.com

RESEARCH PROGRESS ON IRON ENHANCED ANAEROBIC AMMONIA OXIDATION REACTION

  • 摘要: 厌氧氨氧化工艺作为新型的高效环保脱氮技术,相比传统脱氮工艺能够有效节省能源消耗。然而,由于厌氧氨氧化细菌活性较低,对环境较为敏感,且易随水流失,限制了厌氧氨氧化脱氮性能,以及厌氧氨氧化工艺的工程化。铁元素作为厌氧氨氧化细菌生长和新陈代谢必需的营养元素,能够显著影响厌氧氨氧化反应。综述了铁元素对厌氧氨氧化反应系统的影响,重点对铁元素提高厌氧氨氧化细菌活性,改善生存环境,强化颗粒污泥形成并提升其稳定性方面进行了分析,旨在为提高厌氧氨氧化细菌活性,推进厌氧氨氧化工艺的应用提供参考。
  • [1] 马娇,曾天续,宋珺,等.纳米单质铁对厌氧氨氧化脱氮性能的影响[J].中国环境科学,2022,42(6):2619-2627.
    [2] 门艳,刘灵婕,朱雅新,等.有机物浓度变化对复合式SBR厌氧氨氧化系统脱氮性能及菌群结构的影响[J/OL].环境工程,2023-03-18.
    [3] LI J, LIU L, ZHENG Y M, et al. Influence of plants on anammox process in constructed wetland: irrelevance, inhibition or enhancement[J]. Chemical Engineering Journal,2023,460.
    [4] 李天皓,江雨婕,毛蔚,等.厌氧氨氧化脱氮强化途径的研究进展[J].工业水处理,2022,42(7):7-14.
    [5] 张典典,汪涛,邵敬敬,等.超声强化作用下厌氧氨氧化工艺启动运行性能[J].中国环境科学,2018,38(4):1356-1363.
    [6] 宋韶华,刘永军,杨璐,等.厌氧氨氧化技术在废水处理中的研究与应用进展[J].水处理技术,2022,48(10):6-12.
    [7] 王伟刚,王彤,樊宇菲,等.厌氧氨氧化颗粒污泥聚集机制研究进展[J].微生物学通报,2022,49(5):1927-1940.
    [8] 王倩,胡嘉源,李天皓,等.铁强化厌氧氨氧化脱氮机理研究进展[J].中国环境科学,2022,42(11):5153-5162.
    [9] LI J, FENG L, BISWAL B K, et al. Bioaugmentation of marine anammox bacteria (MAB)-based anaerobic ammonia oxidation by adding Fe(Ⅲ) in saline wastewater treatment under low temperature[J]. Bioresource Technology, 2020,295:122292.
    [10] LIN S H, LO C C. Fenton process for treatment of desizing wastewater[J]. Water Research, 1997, 31(8):2050-2056.
    [11] LACKNER S, HORN H. Evaluating operation strategies and process stability of a single stage nitritation-anammox SBR by use of the oxidation-reduction potential (ORP)[J]. Bioresource Technology, 2012,107:70-77.
    [12] GUO B B, CHEN Y H, LV L, et al. Transformation of the zero valent iron dosage effect on anammox after long-term culture: from inhibition to promotion[J]. Process Biochemistry, 2019,78:132-139.
    [13] 陈翠忠,额热艾汗,刘洪光,等.铁对厌氧氨氧化过程及脱氮性能的影响[J].环境科学与技术,2021,44(5):14-24.
    [14] LI J, QIANG Z M, YU D S, et al. Performance and microbial community of simultaneous anammox and denitrification(SAD) process in a sequencing batch reactor[J]. Bioresource Technology, 2016,218:1064-1072.
    [15] YAN Y, WANG Y Y, WANG W G, et al. Comparison of short-term dosing ferrous ion and nanoscale zero-valent iron for rapid recovery of anammox activity from dissolved oxygen inhibition[J]. Water Research, 2019,153:284-294.
    [16] FEROUSI C, LINDHOUD S, BAYMANN F, et al. Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria[J]. Current Opinion in Chemical Biology, 2017, 37: 129-136.
    [17] NI SQ, NI JY, YANG N, WANG J. Effect of magnetic nanoparticles on the performance of activated sludge treatment system[J]. Bioresource Technology, 2013, 143: 555-561.
    [18] QIAO S, BI Z, ZHOU J, et al. Long term effects of divalent ferrous ion on the activity of anammox biomass[J]. Bioresource Technology, 2013,142:490-497.
    [19] MA H, NIU Q, ZHANG Y, et al. Substrate inhibition and concentration control in an UASB-Anammox process[J]. Bioresource Technology, 2017,238:263-272.
    [20] KANG D, LI Y Y, XU D D, et al.Deciphering correlation between chromaticity and activity of anammox sludge[J]. Water Research, 2020, 185: 116184.
    [21] ZHANG Y L, MA H Y, CHEN R, et al. Stoichiometric variation and loading capacity of a high-loading anammox attached film expanded bed (AAEEB) reactor[J]. Bioresource Technology, 2018, 253: 130-140.
    [22] KARTAL B, KELTJENS J T. Anammox biochemistry: a tale of heme c proteins[J]. Trends in Biochemical Sciences, 2016, 41(12): 998-1011.
    [23] XU J J, CHENG Y F, JIN R C. Long-term effects of Fe3O4 NPs on the granule-based anaerobic ammonium oxidation process: performance, sludge characteristics and microbial community[J]. Journal of Hazardous Materials, 2020, 398: 122965.
    [24] BI Z, QIAO S, ZHOU J T, et al. Fast start-up of Anammox process with appropriate ferrous iron concentration[J]. Bioresource Technology, 2014,170:506-512.
    [25] DAVEREY A, CHEN Y C, SUNG S W, et al. Effect of zinc on anammox activity and performance of simultaneous partial nitrification, anammox and denitrification (SNAD) process[J]. Bioresource Technology, 2014,165:105-110.
    [26] SU J X, CHEN S L. A key piece in the global N-cycle: the N-N bond formation presented by heme-dependent hydrazine synthase[J]. ACS Catalysis, 2021, 11(11): 6489-6498.
    [27] MA H Y, ZHANG Y L, XUE Y, et al. Relationship of heme c, nitrogen loading capacity and temperature in anammox reactor[J]. Science of the Total Environment, 2019, 659: 568-577.
    [28] AKRAM M, DIETL A, MERSDORF U, et al. A 192-heme electron transfer network in the hydrazine dehydrogenase complex[J]. Science Advances, 2019, 5(4): 4310.
    [29] 雷欣,闫荣,慕玉洁,等.铁元素对厌氧氨氧化菌脱氮效能的影响[J].化工进展,2021,40(5):2730-2738.
    [30] 刘嘉玮,汪涵,王亚宜.铁矿物强化厌氧氨氧化效能及其微生物机制研究进展[J].微生物学通报,2022,49(10):4305-4326.
    [31] ZHANG Z Z, CHENG Y F, BAI Y H, et al. Enhanced effects of maghemite nanoparticles on the flocculent sludge wasted from a high-rate anammox reactor: performance, microbial community and sludge characteristics[J]. Bioresource Technology, 2018,250:265-272.
    [32] ZHANG Z Z, DENG R, CHENG Y F, et al. Behavior and fate of copper ions in an anammox granular sludge reactor and strategies for remediation[J]. Journal of Hazardous Materials,2015,300:838-846.
    [33] GAO F, ZHANG HM, YANG FL, et al. The effects of zero-valent iron (ZVI) and ferroferric oxide(Fe3O4) on anammox activity and granulation in anaerobic continuously stirred tank reactors (CSTR)[J]. Process Biochemistry, 2014, 49(11): 1970-1978.
    [34] FU H M, PENG M W, YAN P, et al. Potential role of nanobubbles in dynamically modulating the structure and stability of anammox granular sludge within biological nitrogen removal process[J]. Science of the Total Environment, 2021, 784: 147110.
    [35] TANG S M, XU Z H, LIU Y L, et al. Performance, kinetics characteristics and enhancement mechanisms in anammox process under Fe(Ⅱ) enhanced conditions[J]. Biodegradation,2020,31.
    [36] 李亚男,闫冰,郑蕊,等.一体式部分亚硝化-厌氧氨氧化工艺污泥膨胀发生和恢复过程中胞外聚合物变化特征[J].环境科学学报,2022,42(11):106-116.
    [37] 杨明明,党超军,张爱余,等.厌氧氨氧化颗粒污泥胞外聚合物金属元素特性[J].中国环境科学,2020,40(11):4728-4734.
    [38] VOBERKOVA S, HERMANOVA S, HRUBANOVA K, et al. Biofilm formation and extracellular polymeric substances (EPS) production by Bacillus subtilis depending on nutritional conditions in the presence of polyester film[J]. Folia Microbiologica, 2016,61(2):91-100.
    [39] KANG D, LIN Q J, XU D P, et al. Color characterization of anammox granular sludge:chromogenic substance, microbial succession and state indication[J]. Science of the Total Environment, 2018,642:1320-1327.
    [40] WANG Z B, LIU X L, NI S Q, et al. Nano zero-valent iron improves anammox activity by promoting the activity of quorum sensing system[J]. Water Research, 2021,202:117491.
    [41] REN L F, NI S Q, LIU C, et al. Effect of zero-valent iron on the start-up performance of anaerobic ammonium oxidation (anammox) process[J]. Environmental Science and Pollution Research, 2015, 22(4):2925-2934.
    [42] WANG H, FAN Y F, ZHOU M D, et al. Function of Fe(Ⅲ)-minerals in the enhancement of anammox performance exploiting integrated network and metagenomics analyses[J]. Water Research, 2022, 210: 117998.
    [43] WANG W G, XIE H C, WANG H, et al. Organic compounds evolution and sludge properties variation along partial nitritation and subsequent anammox processes treating reject water[J]. Water Research, 2020, 184: 116197.
    [44] ZHANG Q, ZHANG X, BAI Y H, et al. Exogenous extracellular polymeric substances as protective agents for the preservation of anammox granules[J]. Science of the Total Environment, 2020,747:141464.
  • 加载中
计量
  • 文章访问数:  79
  • HTML全文浏览量:  7
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-30

目录

    /

    返回文章
    返回