RESEARCH PROGRESS ON IRON ENHANCED ANAEROBIC AMMONIA OXIDATION REACTION
-
摘要: 厌氧氨氧化工艺作为新型的高效环保脱氮技术,相比传统脱氮工艺能够有效节省能源消耗。然而,由于厌氧氨氧化细菌活性较低,对环境较为敏感,且易随水流失,限制了厌氧氨氧化脱氮性能,以及厌氧氨氧化工艺的工程化。铁元素作为厌氧氨氧化细菌生长和新陈代谢必需的营养元素,能够显著影响厌氧氨氧化反应。综述了铁元素对厌氧氨氧化反应系统的影响,重点对铁元素提高厌氧氨氧化细菌活性,改善生存环境,强化颗粒污泥形成并提升其稳定性方面进行了分析,旨在为提高厌氧氨氧化细菌活性,推进厌氧氨氧化工艺的应用提供参考。Abstract: Anaerobic ammonia oxidation process, as a new efficient and environmentally friendly denitrification technology, can effectively save energy consumption compared to the traditional denitrification processes. However, due to the low activity of anaerobic ammonia oxidation bacteria, their sensitivity to the environment, and their susceptibility to water loss, the denitrification performance of anaerobic ammonia oxidation is reduced, which limits the engineering application of the anaerobic ammonia oxidation process. Iron, as an essential nutrient for the growth and metabolism of anaerobic ammonia-oxidizing bacteria, can significantly affect the anaerobic ammonia oxidation reaction. This article reviews the impact of iron on anaerobic ammonia oxidation reaction systems, focusing on the analysis of iron enhancing the activity of anaerobic ammonia oxidation bacteria, improving the living environment, and strengthening the formation and stability of granular sludge. The aim is to provide theoretical guidance for improving the activity of anaerobic ammonia oxidation bacteria and achieving the application of anaerobic ammonia oxidation technology.
-
Key words:
- ferrous /
- ANAMMOX /
- enhancement /
- metabolism /
- granular sludge
-
[1] 马娇,曾天续,宋珺,等.纳米单质铁对厌氧氨氧化脱氮性能的影响[J].中国环境科学,2022,42(6):2619-2627. [2] 门艳,刘灵婕,朱雅新,等.有机物浓度变化对复合式SBR厌氧氨氧化系统脱氮性能及菌群结构的影响[J/OL].环境工程,2023-03-18. [3] LI J, LIU L, ZHENG Y M, et al. Influence of plants on anammox process in constructed wetland: irrelevance, inhibition or enhancement[J]. Chemical Engineering Journal,2023,460. [4] 李天皓,江雨婕,毛蔚,等.厌氧氨氧化脱氮强化途径的研究进展[J].工业水处理,2022,42(7):7-14. [5] 张典典,汪涛,邵敬敬,等.超声强化作用下厌氧氨氧化工艺启动运行性能[J].中国环境科学,2018,38(4):1356-1363. [6] 宋韶华,刘永军,杨璐,等.厌氧氨氧化技术在废水处理中的研究与应用进展[J].水处理技术,2022,48(10):6-12. [7] 王伟刚,王彤,樊宇菲,等.厌氧氨氧化颗粒污泥聚集机制研究进展[J].微生物学通报,2022,49(5):1927-1940. [8] 王倩,胡嘉源,李天皓,等.铁强化厌氧氨氧化脱氮机理研究进展[J].中国环境科学,2022,42(11):5153-5162. [9] LI J, FENG L, BISWAL B K, et al. Bioaugmentation of marine anammox bacteria (MAB)-based anaerobic ammonia oxidation by adding Fe(Ⅲ) in saline wastewater treatment under low temperature[J]. Bioresource Technology, 2020,295:122292. [10] LIN S H, LO C C. Fenton process for treatment of desizing wastewater[J]. Water Research, 1997, 31(8):2050-2056. [11] LACKNER S, HORN H. Evaluating operation strategies and process stability of a single stage nitritation-anammox SBR by use of the oxidation-reduction potential (ORP)[J]. Bioresource Technology, 2012,107:70-77. [12] GUO B B, CHEN Y H, LV L, et al. Transformation of the zero valent iron dosage effect on anammox after long-term culture: from inhibition to promotion[J]. Process Biochemistry, 2019,78:132-139. [13] 陈翠忠,额热艾汗,刘洪光,等.铁对厌氧氨氧化过程及脱氮性能的影响[J].环境科学与技术,2021,44(5):14-24. [14] LI J, QIANG Z M, YU D S, et al. Performance and microbial community of simultaneous anammox and denitrification(SAD) process in a sequencing batch reactor[J]. Bioresource Technology, 2016,218:1064-1072. [15] YAN Y, WANG Y Y, WANG W G, et al. Comparison of short-term dosing ferrous ion and nanoscale zero-valent iron for rapid recovery of anammox activity from dissolved oxygen inhibition[J]. Water Research, 2019,153:284-294. [16] FEROUSI C, LINDHOUD S, BAYMANN F, et al. Iron assimilation and utilization in anaerobic ammonium oxidizing bacteria[J]. Current Opinion in Chemical Biology, 2017, 37: 129-136. [17] NI SQ, NI JY, YANG N, WANG J. Effect of magnetic nanoparticles on the performance of activated sludge treatment system[J]. Bioresource Technology, 2013, 143: 555-561. [18] QIAO S, BI Z, ZHOU J, et al. Long term effects of divalent ferrous ion on the activity of anammox biomass[J]. Bioresource Technology, 2013,142:490-497. [19] MA H, NIU Q, ZHANG Y, et al. Substrate inhibition and concentration control in an UASB-Anammox process[J]. Bioresource Technology, 2017,238:263-272. [20] KANG D, LI Y Y, XU D D, et al.Deciphering correlation between chromaticity and activity of anammox sludge[J]. Water Research, 2020, 185: 116184. [21] ZHANG Y L, MA H Y, CHEN R, et al. Stoichiometric variation and loading capacity of a high-loading anammox attached film expanded bed (AAEEB) reactor[J]. Bioresource Technology, 2018, 253: 130-140. [22] KARTAL B, KELTJENS J T. Anammox biochemistry: a tale of heme c proteins[J]. Trends in Biochemical Sciences, 2016, 41(12): 998-1011. [23] XU J J, CHENG Y F, JIN R C. Long-term effects of Fe3O4 NPs on the granule-based anaerobic ammonium oxidation process: performance, sludge characteristics and microbial community[J]. Journal of Hazardous Materials, 2020, 398: 122965. [24] BI Z, QIAO S, ZHOU J T, et al. Fast start-up of Anammox process with appropriate ferrous iron concentration[J]. Bioresource Technology, 2014,170:506-512. [25] DAVEREY A, CHEN Y C, SUNG S W, et al. Effect of zinc on anammox activity and performance of simultaneous partial nitrification, anammox and denitrification (SNAD) process[J]. Bioresource Technology, 2014,165:105-110. [26] SU J X, CHEN S L. A key piece in the global N-cycle: the N-N bond formation presented by heme-dependent hydrazine synthase[J]. ACS Catalysis, 2021, 11(11): 6489-6498. [27] MA H Y, ZHANG Y L, XUE Y, et al. Relationship of heme c, nitrogen loading capacity and temperature in anammox reactor[J]. Science of the Total Environment, 2019, 659: 568-577. [28] AKRAM M, DIETL A, MERSDORF U, et al. A 192-heme electron transfer network in the hydrazine dehydrogenase complex[J]. Science Advances, 2019, 5(4): 4310. [29] 雷欣,闫荣,慕玉洁,等.铁元素对厌氧氨氧化菌脱氮效能的影响[J].化工进展,2021,40(5):2730-2738. [30] 刘嘉玮,汪涵,王亚宜.铁矿物强化厌氧氨氧化效能及其微生物机制研究进展[J].微生物学通报,2022,49(10):4305-4326. [31] ZHANG Z Z, CHENG Y F, BAI Y H, et al. Enhanced effects of maghemite nanoparticles on the flocculent sludge wasted from a high-rate anammox reactor: performance, microbial community and sludge characteristics[J]. Bioresource Technology, 2018,250:265-272. [32] ZHANG Z Z, DENG R, CHENG Y F, et al. Behavior and fate of copper ions in an anammox granular sludge reactor and strategies for remediation[J]. Journal of Hazardous Materials,2015,300:838-846. [33] GAO F, ZHANG HM, YANG FL, et al. The effects of zero-valent iron (ZVI) and ferroferric oxide(Fe3O4) on anammox activity and granulation in anaerobic continuously stirred tank reactors (CSTR)[J]. Process Biochemistry, 2014, 49(11): 1970-1978. [34] FU H M, PENG M W, YAN P, et al. Potential role of nanobubbles in dynamically modulating the structure and stability of anammox granular sludge within biological nitrogen removal process[J]. Science of the Total Environment, 2021, 784: 147110. [35] TANG S M, XU Z H, LIU Y L, et al. Performance, kinetics characteristics and enhancement mechanisms in anammox process under Fe(Ⅱ) enhanced conditions[J]. Biodegradation,2020,31. [36] 李亚男,闫冰,郑蕊,等.一体式部分亚硝化-厌氧氨氧化工艺污泥膨胀发生和恢复过程中胞外聚合物变化特征[J].环境科学学报,2022,42(11):106-116. [37] 杨明明,党超军,张爱余,等.厌氧氨氧化颗粒污泥胞外聚合物金属元素特性[J].中国环境科学,2020,40(11):4728-4734. [38] VOBERKOVA S, HERMANOVA S, HRUBANOVA K, et al. Biofilm formation and extracellular polymeric substances (EPS) production by Bacillus subtilis depending on nutritional conditions in the presence of polyester film[J]. Folia Microbiologica, 2016,61(2):91-100. [39] KANG D, LIN Q J, XU D P, et al. Color characterization of anammox granular sludge:chromogenic substance, microbial succession and state indication[J]. Science of the Total Environment, 2018,642:1320-1327. [40] WANG Z B, LIU X L, NI S Q, et al. Nano zero-valent iron improves anammox activity by promoting the activity of quorum sensing system[J]. Water Research, 2021,202:117491. [41] REN L F, NI S Q, LIU C, et al. Effect of zero-valent iron on the start-up performance of anaerobic ammonium oxidation (anammox) process[J]. Environmental Science and Pollution Research, 2015, 22(4):2925-2934. [42] WANG H, FAN Y F, ZHOU M D, et al. Function of Fe(Ⅲ)-minerals in the enhancement of anammox performance exploiting integrated network and metagenomics analyses[J]. Water Research, 2022, 210: 117998. [43] WANG W G, XIE H C, WANG H, et al. Organic compounds evolution and sludge properties variation along partial nitritation and subsequent anammox processes treating reject water[J]. Water Research, 2020, 184: 116197. [44] ZHANG Q, ZHANG X, BAI Y H, et al. Exogenous extracellular polymeric substances as protective agents for the preservation of anammox granules[J]. Science of the Total Environment, 2020,747:141464.
点击查看大图
计量
- 文章访问数: 196
- HTML全文浏览量: 19
- PDF下载量: 8
- 被引次数: 0