ENHANCED NITRIFICATION AND DENITRIFICATION BY COUPLING MICROBIAL ELECTROLYSIS CELL IN A SINGLE BED VERTICAL FLOW CONSTRUCTED WETLAND
-
摘要: 为探究微生物电解池对人工湿地硝化反硝化脱氮的强化效果,构建了闭路运行(VFCW-MEC)与开路运行(VFCW-C)的垂直潜流人工湿地-微生物电解池系统,研究了不同外加电压(0,0.2,0.4 V)下耦合湿地系统的脱氮效能差异及N2O排放特征。结果表明:施加外加电压的VFCW-MEC对NH4-N和TN的去除效率均高于VFCW-C,外加电压为0,0.2,0.4 V时,VFCW-MEC对NH4+-N的去除率分别为(61.66±0.30)%、(69.21±0.31)%和(74.82±0.27)%,TN去除率分别为(11.53±0.35)%、(20.06±0.59)%和(33.29±0.35)%,这些现象表明,外加电压有助于提升湿地系统对NH4+-N和TN的去除效率。通过解析VFCW-MEC系统阳极和阴极区域氮浓度变化规律,发现阳极和阴极分别加强了垂直潜流湿地的硝化和反硝化作用,微生物产氢和直接电子传递作用共同促进了阴极反硝化脱氮效率。值得注意的是,外加电压也增加了脱氮过程中N2O的排放效率,不利于温室气体的减排。以上研究表明:微生物电解池在强化潜流人工湿地硝化反硝化脱氮方面具有良好潜力。Abstract: To investigate the effect of microbial electrolysis cells on the nitrification and denitrification performance of constructed wetlands, vertical flow constructed wetland-microbial electrolysis cell systems with closed circuit operation (VFCW-MEC) and open circuit operation (VFCW-C) were constructed. The nitrogen removal performance and N2O emission characteristics of the coupled wetland systems with different external voltages (0, 0.2, 0.4 V) were investigated. The results showed that NH4-N and TN removal efficiencies of VFCW-MEC were higher than that of VFCW-C, and the NH4-N removal efficiencies of VFCW-MEC at external voltages of 0, 0.2, 0.4 V were (61.66±0.30)%, (69.21±0.31)% and (74.82±0.27)%, respectively, and the corresponding values for TN were (11.53±0.35)%, (20.06±0.59)% and (33.29±0.35)%, respectively. These observations indicated that the external voltage can enhance the NH4+-N and TN removal efficiency of the wetland system. By analysing the variation patterns of nitrogen concentration in the anode and cathode zones of the VFCW-MEC system, it was found that the anode and cathode enhanced nitrification and denitrification efficiencies, respectively. Microbial hydrogen production and direct electron transfer contributed to the enhanced denitrification efficiency in the cathode. It is worth that the external voltage increases the efficiency of N2O emission, which is not conducive to greenhouse gas reduction. These findings show the potential of microbial electrolytic cells for enhancing nitrogen removal of constructed wetlands.
-
[1] 祝惠, 阎百兴, 王鑫壹. 我国人工湿地的研究与应用进展及未来发展建议[J]. 中国科学基金, 2022, 36(3):391-397. [2] KUMAR S A, SAMIR B, ISHTIYAQ A. Various types of constructed wetland for wastewater treatment:a review[J]. IOP Conference Series:Earth and Environmental Science, 2022, 1032(1):012026. [3] 余俊霞, 陈双荣, 刘凌言,等. 复合人工湿地系统对低污染水总氮的净化效果及其微生物群落结构特征[J]. 环境工程, 2022, 40(1):13-20. [4] LIU H Q, HU Z, ZHANG J, et al. Optimizations on supply and distribution of dissolved oxygen in constructed wetlands:a review[J]. Bioresource Technology, 2016:797-805. [5] LU M, SU Y L, CHEN Y G, et al. The effects of fulvic acid on microbial denitrification:promotion of NADH generation, electron transfer, and consumption[J]. Applied Microbiology and Biotechnology, 2016, 100(12):5607-5618. [6] 王宇娜, 国晓春, 卢少勇,等. 人工湿地对低污染水中氮去除的研究进展:效果、机制和影响因素[J]. 农业资源与环境学报, 2021, 38(5):722-734. [7] KELLY P T, HE Z. Nutrients removal and recovery in bioelectrochemical systems:a review[J]. Bioresource Technology, 2014, 153:351-360. [8] DEVI R, ARCHANA S, R. K D, et al. Microbial electrolysis cell as a diverse technology:overview of prospective applications, advancements, and challenges[J]. Energies, 2022, 15(7):2611. [9] 周钦茂, 郑德聪, 杨暖,等. 微生物电化学法处理氨氮废水研究进展[J]. 应用与环境生物学报, 2022, 28(3):779-786. [10] ZHAN G Q, ZHANG L X, LI D P, et al. Autotrophic nitrogen removal from ammonium at low applied voltage in a single-compartment microbial electrolysis cell[J]. Bioresource Technology, 2012, 116:271-277. [11] 薄涛, 翟洪艳, 季民. 微生物电解池在氢气制备中的应用[J]. 现代化工, 2017, 37(8):50-54. [12] KATURI K P, ALI M, SAIKALY P E. The role of microbial electrolysis cell in urban wastewater treatment:integration options, challenges, and prospects[J]. Current Opinion in Biotechnology, 2019, 57:101-110. [13] 孙杏, 胡凯, 雷晨雨,等. 冻融破解预处理剩余污泥及强化微生物电解池处理效能[J]. 环境工程, 2021, 39(4):147-155. [14] QU B, FAN B, ZHU S K, et al. Anaerobic ammonium oxidation with an anode as the electron acceptor[J]. Environmental Microbiology Reports, 2014, 6(1):100-105. [15] ZHAN G Q, LI D P, TAO Y, et al. Ammonia as carbon-free substrate for hydrogen production in bioelectrochemical systems[J]. International Journal of Hydrogen Energy, 2014, 39(23):11854-11859. [16] ZHAN G Q, ZHANG L X, TAO Y, et al. Anodic ammonia oxidation to nitrogen gas catalyzed by mixed biofilms in bioelectrochemical systems[J]. Electrochimica Acta, 2014, 135:345-350. [17] 付晶淼, 赵亚乾, 袁玉杰,等. 人工湿地中的微生物电化学技术耦合体系原理及其演变[J]. 中国给水排水, 2022, 38(22):8-15. [18] JU X X, WU S B, HUANG X S, et al. How the novel integration of electrolysis in tidal flow constructed wetlands intensifies nutrient removal and odor control[J]. Bioresour Technol, 2014, 169:605-613. [19] GU X S, CHEN D Y, WU F, et al. Function of aquatic plants on nitrogen removal and greenhouse gas emission in enhanced denitrification constructed wetlands:iris pseudacorus for example[J]. Journal of Cleaner Production, 2022, 330:129842. [20] CHEN D Y, GU X S, ZHU W Y, et al. Electrons transfer determined greenhouse gas emissions in enhanced nitrogen-removal constructed wetlands with different carbon sources and carbon-to-nitrogen ratios[J]. Bioresource Technology, 2019, 285:121313. [21] 程玉周. 垂直流人工湿地除碳脱氮反应动力学研究[D]. 成都:西南交通大学, 2013. [22] 夏函青, 伍永钢, 付成林,等. 人工湿地-微生物电解池耦合系统的脱氮特性[J]. 化工进展, 2020, 39(11):4677-4684. [23] 谢莱, 杨敏, 杨恩喆,等. 生物电化学耦合厌氧氨氧化强化脱氮及其微生物群落特征[J]. 生物工程学报,2023,39:1-14. [24] LEE J W, LEE K H, PARK K Y, et al. Hydrogenotrophic denitrification in a packed bed reactor:effects of hydrogen-to-water flow rate ratio[J]. Bioresource Technology, 2010, 101(11):3940-3946. [25] 夏函青. 基于人工湿地-微生物电解池(CW-MEC)技术处理含氮废水的效果与机理研究[D]. 芜湖:安徽师范大学, 2020. [26] SANATH K, DAEHYEON C, TABISH N M, et al. Ammonia removal by simultaneous nitrification and denitrification in a single dual-chamber microbial electrolysis cell[J]. Energies, 2022, 15(23):9171. [27] LIU X H, LIU Y, GUO X C, et al. High degree of contaminant removal and evolution of microbial community in different electrolysis-integrated constructed wetland systems[J]. Chemical Engineering Journal, 2020, 388:124391. [28] LIANG D, HE W H, LI C, et al. Remediation of nitrate contamination by membrane hydrogenotrophic denitrifying biofilm integrated in microbial electrolysis cell[J]. Water Research, 2020, 188:116498. [29] ZHOU X, JIA L X, LIANG C L, et al. Simultaneous enhancement of nitrogen removal and nitrous oxide reduction by a saturated biochar-based intermittent aeration vertical flow constructed wetland:effects of influent strength[J]. Chemical Engineering Journal, 2018, 334:1842-1850. [30] VIRDIS B, READ S T, RABAEY K, et al. Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode[J]. Bioresour Technol, 2011, 102(1):334-341.
点击查看大图
计量
- 文章访问数: 243
- HTML全文浏览量: 14
- PDF下载量: 23
- 被引次数: 0