HYDRATION MECHANISM AND KINETIC CHARACTERISTICS OF CaCl2 EXCITING FLY ASH PASTE FILLING MATERIALS
-
摘要: 胶结充填材料的早期水化动力学特征是合理设计配比的重要前提。采用等温量热法测量了不同CaCl2浓度激发粉煤灰膏体充填材料(FPFM)的早期水化放热情况,基于Krstulovic-Dabic水化动力学模型对不同FPFM早期水化放热进行拟合,计算其水化动力学参数,对水化动力过程各阶段的变化特征进行分析,并对CaCl2的激发机理做出解释。结果表明:随着CaCl2浓度增加,FPFM水化热量从1.1 mW/g增大至2.9 mW/g,总累计放热量从16.4 J/g增大至29.6 J/g,诱导阶段和加速阶段持续时间缩短,使其水化反应速率加快,水化反应程度加深。CaCl2激发FPFM的水化机理均为成核和晶体生长(NG)→扩散(I)→相边界作用(D),随着CaCl2浓度增加,FPFM动力学参数均增大,I阶段持续时间延长,促进了粉煤灰的火山灰反应,产生了更多的水化产物。因此,通过对CaCl2激发FPFM早期水化动力学特征的研究,揭示了其结构演化的规律,对FPFM的现场应用提供理论参考。Abstract: The early hydration kinetics of cementitious filling materials is an important prerequisite for reasonable designed ratios. In this paper, the early hydration exothermic condition of fly ash paste filling materials (FPFM) with different CaCl2 concentration excitation was measured by isothermal calorimetry, and the early hydration exothermic heat of different FPFM was fitted based on the Krstulovic-Dabic hydration kinetic model. The hydration kinetic parameters were calculated, the variation characteristics of each stage of the hydration dynamic process were analyzed, and the excitation mechanism of CaCl2 was explained. The results showed that with the increase of CaCl2 concentration, the hydration heat of FPFM increased from 1.1 mW/g to 2.9 mW/g, and the total cumulative heat release increased from 16.4 J/g to 29.6 J/g, so that the hydration reaction rate was accelerated and the degree of hydration reaction was deepened. The hydration mechanism of FPFM stimulated by CaCl2 was NG→I→D, and with the increase of CaCl2 concentration, the kinetic parameters of FPFM were increased, and the duration of phase I was prolonged, which promoted the pozzarash reaction of fly ash and produced more hydration products. Therefore, through the study of the early hydration kinetic characteristics of CaCl2 exciting FPFM, the law of its structural evolution is revealed, which provides a certain guide for the application of FPFM.
-
[1] 缪协兴, 钱鸣高, 中国煤炭资源绿色开采研究现状与展望[J]. 采矿与安全工程学报, 2009, 26(1):1-14. [2] 刘建功, 李新旺, 何团, 我国煤矿充填开采应用现状与发展[J]. 煤炭学报, 2020, 45(1):141-150. [3] LI M, ZHANG J X, LI A L, et al. Reutilisation of coal gangue and fly ash as underground backfill materials for surface subsidence control[J]. Journal of Cleaner Production, 2020, 254:120113. [4] 屈慧升, 索永录, 刘浪, 等. 改性煤气化渣基矿用充填材料制备与性能[J]. 煤炭学报, 2020, 47(5):1958-1973. [5] 刘浪, 阮仕山, 方治余, 等. 镁渣的改性及其在矿山充填领域的应用探索[J]. 煤炭学报, 2021, 46(12):3833-3845. [6] CAVUSOGLU I, YILMAZ E, YILMAZ A O. Additivity effect on properties of cemented coal fly ash backfill containing water-reducing admixtures[J]. Construction and Building Materials, 2021, 267:121021. [7] 尹博, 康天合, 康健婷, 等. 粉煤灰膏体充填材料水化动力过程与水化机制[J]. 岩石力学与工程学报, 2018, 37(增刊2):4384-4394. [8] LI W C, FALL M. Sulphate effect on the early age strength and self-desiccation of cemented paste backfill[J]. Construction and Building Materials, 2016, 106:296-304. [9] OLDHAM R, DICKERSON C, MCHENRY R. Void fill techniques for stabilizing roof conditions during longwall recovery[J].International Journal of Mining Science and Technology, 2016, 26(1):119-122. [10] ERCIKDI B, BAKI H, I·ZKI M. Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill[J]. Journal of Environmental Management, 2013, 115:5-13. [11] HU L L, HE Z, SHAO Y X, et al. Microstructure and properties of sustainable cement-based materials using combustion treated rice husk ash[J]. Construction and Building Materials, 2021, 294:123482. [12] MENG T, HONG Y P, WEI H D, et al. Effect of nano-SiO2 with different particle size on the hydration kinetics of cement[J]. Thermochimica Acta, 2019, 675:127-133. [13] LI L B, CHEN M X, GUO X Y, et al. Early-age hydration characteristics and kinetics of Portland cement pastes with super low w/c ratios using ice particles as mixing water[J]. Journal of Materials Research and Technology, 2020, 9(4):8407-8428. [14] LANG W, LIPING Z, JIAN T. Hydration Kinetics Model of Slagblended Cement System[J]. IOP Conference Series:Earth and Environmental Science, 2019, 242(6) doi: 10.1088/1755-1315/242/6/062074. [15] PARK S, ABATE S Y, KIM H K. Hydration kinetics modeling of sodium silicate-activated slag:a comparative study[J]. Construction and Building Materials, 2020, 242:118144. [16] MENGYI Z, JIHUI Z, DONGMIN W, et al. Hydration properties and kinetic characteristics of blended cement containing lithium slag powder[J]. Journal of Building Engineering, 2021, 39 doi: 10.1016/j.jobe.2021.102287. [17] 任旭, 张秀贞, 刘志超, 等. 多元胶凝材料水化热动力学研究[J]. 混凝土与水泥制品, 2021(6):13-18. [18] 张增起. 水泥-矿渣复合胶凝材料水化动力学模型研究[D].北京:清华大学, 2018. [19] TYDLITÁT V, ZÁKOUTSKY J, CHMIEDER M, et al. Application of large-volume calorimetry for monitoring the early-stage hydration heat development in cement-based composites as a function of w/c[J]. Thermochimica Acta, 2012, 546:44-48. [20] SUN Z Q, VOLLPRACHT A. Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag[J]. Cement and Concrete Research, 2018, 103:110-122. [21] 阎培渝, 郑峰. 水泥基材料的水化动力学模型[J]. 硅酸盐学报, 2006,34(5):555-559. [22] LIU L, YANG P, QI C C, et al. An experimental study on the early-age hydration kinetics of cemented paste backfill[J]. Construction and Building Materials, 2019, 212(Jul.10):283-294. [23] YIN B, KANG T H, KANG J T, et al. Investigation of the hydration kinetics and microstructure formation mechanism of fresh fly ash cemented filling materials based on hydration heat and volume resistivity characteristics[J]. Applied Clay Science, 2018, 166:146-158. [24] 毋林林, 康天合, 尹博, 等. 粉煤灰膏体充填材料水化放热特性的微量热测试与分析[J]. 煤炭学报, 2015,40(12):2801-2806. [25] 尹博, 康天合, 康健婷, 等. 粉煤灰膏体充填材料水化动力过程与水化机制[J]. 岩石力学与工程学报, 2018, 37(增刊2):4384-4394. [26] KONDO R, DAIMON M. Early hydration of tricalcium silicate:a solid reaction with induction and acceleration periods[J]. Journal of the American Ceramic Society, 1969, 52(9):503-508. [27] STEIN H N, STEVELS J M. Influence of silica on the hydration of 3 CaO,SiO2[J]. Russian Journal of Applied Chemistry, 1964, 14(8):338-346. [28] 程海勇, 吴爱祥, 王贻明, 等. 粉煤灰-水泥基膏体微观结构分形表征及动力学特征[J]. 岩石力学与工程学报, 2016, 35(增刊2):4241-4248. [29] 徐子芳, 张明旭, 许海仙. 石灰-石膏-粉煤灰水泥浆体的水化机理研究[J]. 环境工程学报, 2009, 3(10):1879-1884. [30] 王培铭,刘贤萍,胡曙光,等.硅酸盐熟料-煤矸石/粉煤灰混合水泥水化模型研究[J].硅酸盐学报, 2007(S1):180-186. [31] SUN Q, TIAN S, SUN Q W, et al. Preparation and microstructure of fly ash geopolymer paste backfill material[J]. Journal of Cleaner Production, 2019, 225:376-390. [32] BULLARD J W, JENNINGS H M, LIVINGSTON R A, et al. Mechanisms of cement hydration[J]. Cement and Concrete Research, 2010, 41(12):1208-1223. [33] 勾密峰, 黄飞, 王思军, 等. 煅烧铝土矿尾矿对水泥凝结时间的影响[J]. 材料导报, 2015, 29(9):100-102,112. [34] 赵思勰, 晏华, 汪宏涛, 等. 粉煤灰掺量对磷酸钾镁水泥水化动力学的影响[J]. 材料研究学报, 2017, 31(11):839-846. [35] 韩方晖, 王栋民, 阎培渝. 含不同掺量矿渣或粉煤灰的复合胶凝材料的水化动力学[J]. 硅酸盐学报, 2014, 42(5):613-620. [36] 施惠生, 魏雪, 吴凯, 等. 水泥-粉煤灰-砷渣三元体系水化动力学研究[J]. 粉煤灰综合利用, 2016(6):3-6,11. [37] LYU X J, YAO G, WANG Z M, et al. Hydration kinetics and properties of cement blended with mechanically activated gold mine tailings[J]. Thermochimica Acta, 2020, 683:178457. [38] 曹红红, 匡建新, 颜国平. 激发剂作用下粉煤灰火山灰反应特征的研究[J]. 粉煤灰综合利用, 1997(2):32-36. [39] 柯国军, 杨晓峰, 彭红, 等. 化学激发粉煤灰活性机理研究进展[J]. 煤炭学报, 2005,30(3):366-370. [40] CHEN S J, DU Z W, ZHANG Z, et al. Effects of chloride on the early mechanical properties and microstructure of gangue-cemented paste backfill[J]. Construction and Building Materials, 2020, 235:117504. [41] GOÑI S, FRIAS M, VIGIL de la VILLA R, et al. Sodium chloride effect on durability of ternary blended cement. Microstructural characterization and strength[J]. Composites Part B:Engineering, 2013, 54:163-168. [42] YUE Y, WANG J J, BASHEER P A M, et al. Raman spectroscopic investigation of Friedel's salt[J]. Cement and Concrete Composites, 2018, 86:306-314. [43] ZHU Q, JIANG L H, CHEN Y, et al. Effect of chloride salt type on chloride binding behavior of concrete[J]. Construction and Building Materials, 2012, 37:512-517.
点击查看大图
计量
- 文章访问数: 212
- HTML全文浏览量: 23
- PDF下载量: 11
- 被引次数: 0