CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氯化钙激发粉煤灰基充填材料水化的机理及动力学特征

罗鹏翔 邓念东 解耿 邢聪聪 李宇新

罗鹏翔, 邓念东, 解耿, 邢聪聪, 李宇新. 氯化钙激发粉煤灰基充填材料水化的机理及动力学特征[J]. 环境工程, 2023, 41(6): 62-70. doi: 10.13205/j.hjgc.202306009
引用本文: 罗鹏翔, 邓念东, 解耿, 邢聪聪, 李宇新. 氯化钙激发粉煤灰基充填材料水化的机理及动力学特征[J]. 环境工程, 2023, 41(6): 62-70. doi: 10.13205/j.hjgc.202306009
LUO Pengxiang, DENG Niandong, XIE Geng, XING Congcong, LI Yuxin. HYDRATION MECHANISM AND KINETIC CHARACTERISTICS OF CaCl2 EXCITING FLY ASH PASTE FILLING MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 62-70. doi: 10.13205/j.hjgc.202306009
Citation: LUO Pengxiang, DENG Niandong, XIE Geng, XING Congcong, LI Yuxin. HYDRATION MECHANISM AND KINETIC CHARACTERISTICS OF CaCl2 EXCITING FLY ASH PASTE FILLING MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 62-70. doi: 10.13205/j.hjgc.202306009

氯化钙激发粉煤灰基充填材料水化的机理及动力学特征

doi: 10.13205/j.hjgc.202306009
基金项目: 

国家自然科学基金项目(41702377);中国博士后科学基金项目(2017M623208);陕西省自然科学基础研究计划项目(2017JQ4008)

详细信息
    作者简介:

    罗鹏翔(1998-),女,硕士生,主要研究方向为矿山环境恢复及后期治理。luopengxiang0115@163.com

    通讯作者:

    罗鹏翔(1998-),女,硕士生,主要研究方向为矿山环境恢复及后期治理。luopengxiang0115@163.com

HYDRATION MECHANISM AND KINETIC CHARACTERISTICS OF CaCl2 EXCITING FLY ASH PASTE FILLING MATERIALS

  • 摘要: 胶结充填材料的早期水化动力学特征是合理设计配比的重要前提。采用等温量热法测量了不同CaCl2浓度激发粉煤灰膏体充填材料(FPFM)的早期水化放热情况,基于Krstulovic-Dabic水化动力学模型对不同FPFM早期水化放热进行拟合,计算其水化动力学参数,对水化动力过程各阶段的变化特征进行分析,并对CaCl2的激发机理做出解释。结果表明:随着CaCl2浓度增加,FPFM水化热量从1.1 mW/g增大至2.9 mW/g,总累计放热量从16.4 J/g增大至29.6 J/g,诱导阶段和加速阶段持续时间缩短,使其水化反应速率加快,水化反应程度加深。CaCl2激发FPFM的水化机理均为成核和晶体生长(NG)→扩散(I)→相边界作用(D),随着CaCl2浓度增加,FPFM动力学参数均增大,I阶段持续时间延长,促进了粉煤灰的火山灰反应,产生了更多的水化产物。因此,通过对CaCl2激发FPFM早期水化动力学特征的研究,揭示了其结构演化的规律,对FPFM的现场应用提供理论参考。
  • [1] 缪协兴, 钱鸣高, 中国煤炭资源绿色开采研究现状与展望[J]. 采矿与安全工程学报, 2009, 26(1):1-14.
    [2] 刘建功, 李新旺, 何团, 我国煤矿充填开采应用现状与发展[J]. 煤炭学报, 2020, 45(1):141-150.
    [3] LI M, ZHANG J X, LI A L, et al. Reutilisation of coal gangue and fly ash as underground backfill materials for surface subsidence control[J]. Journal of Cleaner Production, 2020, 254:120113.
    [4] 屈慧升, 索永录, 刘浪, 等. 改性煤气化渣基矿用充填材料制备与性能[J]. 煤炭学报, 2020, 47(5):1958-1973.
    [5] 刘浪, 阮仕山, 方治余, 等. 镁渣的改性及其在矿山充填领域的应用探索[J]. 煤炭学报, 2021, 46(12):3833-3845.
    [6] CAVUSOGLU I, YILMAZ E, YILMAZ A O. Additivity effect on properties of cemented coal fly ash backfill containing water-reducing admixtures[J]. Construction and Building Materials, 2021, 267:121021.
    [7] 尹博, 康天合, 康健婷, 等. 粉煤灰膏体充填材料水化动力过程与水化机制[J]. 岩石力学与工程学报, 2018, 37(增刊2):4384-4394.
    [8] LI W C, FALL M. Sulphate effect on the early age strength and self-desiccation of cemented paste backfill[J]. Construction and Building Materials, 2016, 106:296-304.
    [9] OLDHAM R, DICKERSON C, MCHENRY R. Void fill techniques for stabilizing roof conditions during longwall recovery[J].International Journal of Mining Science and Technology, 2016, 26(1):119-122.
    [10] ERCIKDI B, BAKI H, I·ZKI M. Effect of desliming of sulphide-rich mill tailings on the long-term strength of cemented paste backfill[J]. Journal of Environmental Management, 2013, 115:5-13.
    [11] HU L L, HE Z, SHAO Y X, et al. Microstructure and properties of sustainable cement-based materials using combustion treated rice husk ash[J]. Construction and Building Materials, 2021, 294:123482.
    [12] MENG T, HONG Y P, WEI H D, et al. Effect of nano-SiO2 with different particle size on the hydration kinetics of cement[J]. Thermochimica Acta, 2019, 675:127-133.
    [13] LI L B, CHEN M X, GUO X Y, et al. Early-age hydration characteristics and kinetics of Portland cement pastes with super low w/c ratios using ice particles as mixing water[J]. Journal of Materials Research and Technology, 2020, 9(4):8407-8428.
    [14] LANG W, LIPING Z, JIAN T. Hydration Kinetics Model of Slagblended Cement System[J]. IOP Conference Series:Earth and Environmental Science, 2019, 242(6) doi: 10.1088/1755-1315/242/6/062074.
    [15] PARK S, ABATE S Y, KIM H K. Hydration kinetics modeling of sodium silicate-activated slag:a comparative study[J]. Construction and Building Materials, 2020, 242:118144.
    [16] MENGYI Z, JIHUI Z, DONGMIN W, et al. Hydration properties and kinetic characteristics of blended cement containing lithium slag powder[J]. Journal of Building Engineering, 2021, 39 doi: 10.1016/j.jobe.2021.102287.
    [17] 任旭, 张秀贞, 刘志超, 等. 多元胶凝材料水化热动力学研究[J]. 混凝土与水泥制品, 2021(6):13-18.
    [18] 张增起. 水泥-矿渣复合胶凝材料水化动力学模型研究[D].北京:清华大学, 2018.
    [19] TYDLITÁT V, ZÁKOUTSKY J, CHMIEDER M, et al. Application of large-volume calorimetry for monitoring the early-stage hydration heat development in cement-based composites as a function of w/c[J]. Thermochimica Acta, 2012, 546:44-48.
    [20] SUN Z Q, VOLLPRACHT A. Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag[J]. Cement and Concrete Research, 2018, 103:110-122.
    [21] 阎培渝, 郑峰. 水泥基材料的水化动力学模型[J]. 硅酸盐学报, 2006,34(5):555-559.
    [22] LIU L, YANG P, QI C C, et al. An experimental study on the early-age hydration kinetics of cemented paste backfill[J]. Construction and Building Materials, 2019, 212(Jul.10):283-294.
    [23] YIN B, KANG T H, KANG J T, et al. Investigation of the hydration kinetics and microstructure formation mechanism of fresh fly ash cemented filling materials based on hydration heat and volume resistivity characteristics[J]. Applied Clay Science, 2018, 166:146-158.
    [24] 毋林林, 康天合, 尹博, 等. 粉煤灰膏体充填材料水化放热特性的微量热测试与分析[J]. 煤炭学报, 2015,40(12):2801-2806.
    [25] 尹博, 康天合, 康健婷, 等. 粉煤灰膏体充填材料水化动力过程与水化机制[J]. 岩石力学与工程学报, 2018, 37(增刊2):4384-4394.
    [26] KONDO R, DAIMON M. Early hydration of tricalcium silicate:a solid reaction with induction and acceleration periods[J]. Journal of the American Ceramic Society, 1969, 52(9):503-508.
    [27] STEIN H N, STEVELS J M. Influence of silica on the hydration of 3 CaO,SiO2[J]. Russian Journal of Applied Chemistry, 1964, 14(8):338-346.
    [28] 程海勇, 吴爱祥, 王贻明, 等. 粉煤灰-水泥基膏体微观结构分形表征及动力学特征[J]. 岩石力学与工程学报, 2016, 35(增刊2):4241-4248.
    [29] 徐子芳, 张明旭, 许海仙. 石灰-石膏-粉煤灰水泥浆体的水化机理研究[J]. 环境工程学报, 2009, 3(10):1879-1884.
    [30] 王培铭,刘贤萍,胡曙光,等.硅酸盐熟料-煤矸石/粉煤灰混合水泥水化模型研究[J].硅酸盐学报, 2007(S1):180-186.
    [31] SUN Q, TIAN S, SUN Q W, et al. Preparation and microstructure of fly ash geopolymer paste backfill material[J]. Journal of Cleaner Production, 2019, 225:376-390.
    [32] BULLARD J W, JENNINGS H M, LIVINGSTON R A, et al. Mechanisms of cement hydration[J]. Cement and Concrete Research, 2010, 41(12):1208-1223.
    [33] 勾密峰, 黄飞, 王思军, 等. 煅烧铝土矿尾矿对水泥凝结时间的影响[J]. 材料导报, 2015, 29(9):100-102

    ,112.
    [34] 赵思勰, 晏华, 汪宏涛, 等. 粉煤灰掺量对磷酸钾镁水泥水化动力学的影响[J]. 材料研究学报, 2017, 31(11):839-846.
    [35] 韩方晖, 王栋民, 阎培渝. 含不同掺量矿渣或粉煤灰的复合胶凝材料的水化动力学[J]. 硅酸盐学报, 2014, 42(5):613-620.
    [36] 施惠生, 魏雪, 吴凯, 等. 水泥-粉煤灰-砷渣三元体系水化动力学研究[J]. 粉煤灰综合利用, 2016(6):3-6,11.
    [37] LYU X J, YAO G, WANG Z M, et al. Hydration kinetics and properties of cement blended with mechanically activated gold mine tailings[J]. Thermochimica Acta, 2020, 683:178457.
    [38] 曹红红, 匡建新, 颜国平. 激发剂作用下粉煤灰火山灰反应特征的研究[J]. 粉煤灰综合利用, 1997(2):32-36.
    [39] 柯国军, 杨晓峰, 彭红, 等. 化学激发粉煤灰活性机理研究进展[J]. 煤炭学报, 2005,30(3):366-370.
    [40] CHEN S J, DU Z W, ZHANG Z, et al. Effects of chloride on the early mechanical properties and microstructure of gangue-cemented paste backfill[J]. Construction and Building Materials, 2020, 235:117504.
    [41] GOÑI S, FRIAS M, VIGIL de la VILLA R, et al. Sodium chloride effect on durability of ternary blended cement. Microstructural characterization and strength[J]. Composites Part B:Engineering, 2013, 54:163-168.
    [42] YUE Y, WANG J J, BASHEER P A M, et al. Raman spectroscopic investigation of Friedel's salt[J]. Cement and Concrete Composites, 2018, 86:306-314.
    [43] ZHU Q, JIANG L H, CHEN Y, et al. Effect of chloride salt type on chloride binding behavior of concrete[J]. Construction and Building Materials, 2012, 37:512-517.
  • 加载中
计量
  • 文章访问数:  200
  • HTML全文浏览量:  21
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 网络出版日期:  2023-09-02

目录

    /

    返回文章
    返回