CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MBF生物巢反应器对不同稀释比下高盐度工业垃圾渗滤液的处理效果

徐保荐 王明杰 王双春 王文慧 张雅静 韦静 王晓春 刘志刚 李姗蔚 梁止水 徐婉珍 吴智仁 周向同

徐保荐, 王明杰, 王双春, 王文慧, 张雅静, 韦静, 王晓春, 刘志刚, 李姗蔚, 梁止水, 徐婉珍, 吴智仁, 周向同. MBF生物巢反应器对不同稀释比下高盐度工业垃圾渗滤液的处理效果[J]. 环境工程, 2023, 41(6): 92-100. doi: 10.13205/j.hjgc.202306013
引用本文: 徐保荐, 王明杰, 王双春, 王文慧, 张雅静, 韦静, 王晓春, 刘志刚, 李姗蔚, 梁止水, 徐婉珍, 吴智仁, 周向同. MBF生物巢反应器对不同稀释比下高盐度工业垃圾渗滤液的处理效果[J]. 环境工程, 2023, 41(6): 92-100. doi: 10.13205/j.hjgc.202306013
XU Baojian, WANG Mingjie, WANG Shuangchun, WANG Wenhui, ZHANG Yajing, WEI Jing, WANG Xiaochun, LIU Zhigang, LI Shanwei, LIANG Zhishui, XU Wanzhen, WU Zhiren, ZHOU Xiangtong. TREATMENT EFFECT OF MBF BIO-NEST REACTOR ON HIGH-SALINITY INDUSTRIAL LANDFILL LEACHATE WITH DIFFERENT DILUTION RATIOS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 92-100. doi: 10.13205/j.hjgc.202306013
Citation: XU Baojian, WANG Mingjie, WANG Shuangchun, WANG Wenhui, ZHANG Yajing, WEI Jing, WANG Xiaochun, LIU Zhigang, LI Shanwei, LIANG Zhishui, XU Wanzhen, WU Zhiren, ZHOU Xiangtong. TREATMENT EFFECT OF MBF BIO-NEST REACTOR ON HIGH-SALINITY INDUSTRIAL LANDFILL LEACHATE WITH DIFFERENT DILUTION RATIOS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 92-100. doi: 10.13205/j.hjgc.202306013

MBF生物巢反应器对不同稀释比下高盐度工业垃圾渗滤液的处理效果

doi: 10.13205/j.hjgc.202306013
基金项目: 

国家重点研发计划政府间国际科技创新合作重点专项(2016YFE0126400);镇江市重点研发计划(社会发展)(SH2021008)

详细信息
    作者简介:

    徐保荐(1997-),男,硕士研究生,主要研究方向为污废水的脱氮处理。

    通讯作者:

    周向同(1979-),男,工学博士,助理研究员,硕士生导师,主要从事污/废水生物处理与资源化、氮磷转化机制、工艺设计的研究。xtzhou@ujs.edu.cn

TREATMENT EFFECT OF MBF BIO-NEST REACTOR ON HIGH-SALINITY INDUSTRIAL LANDFILL LEACHATE WITH DIFFERENT DILUTION RATIOS

  • 摘要: 为高效处理高盐垃圾渗滤液,使用改性玄武岩纤维(MBF)填料构建新型生物接触氧化反应器,并全面评估形成的生物巢对高盐废水的处理效果。结果表明:MBF生物巢反应器对高盐垃圾渗滤原液中COD、NH4+-N、TN和TP的平均去除率分别达到(26.3±12.4)%、(29.4±8.8)%、(27.6±7.6)%和(16.5±10.4)%,对经1:16稀释的渗透液中相应污染物的去除率则最高提升至(43.7±11.6)%、(59.5±21.4)%、(57.1±12.2)%和(26±8.2)%。废水经处理后,可生化性(B/C)从0.08最高提升至0.36(稀释条件为5:16)。此外,高盐废水还能促使微生物分泌更多的胞外聚合物(EPS),其含量在原水条件下为417.5 mg/g (VSS),而在稀释后(稀释比1:16时)下降至231.6 mg/g (VSS)。微生物种群结构分析显示,Halomonas作为一种好氧硝化-异样反硝化菌属在低稀释比的反应器中相对丰度较高,且随着盐度的降低而降低。对功能基因进行注释发现,盐度主要对生物的氨氧化过程产生抑制,在R-1、R-2和R-3号反应器中未检测出amoABChao表达,而反硝化功能酶的表达量也较种泥有所减少。该研究成果显示了MBF生物巢有对高盐水质的抗胁迫能力,为其在高盐垃圾渗滤液生物处理的推广应用提供依据。
  • [1] COSTA A M, ALFAIA R, CAMPOS J C. Landfill leachate treatment in Brazil:an overview[J]. J Environ Manage, 2019, 232(2):110-116.
    [2] GOTVAJN A Z, TISLER T, ZAGORCKONCAN J. Comparison of different treatment strategies for industrial landfill leachate[J]. J Hazard Mater, 2009, 162(2/3):1446-1456.
    [3] ZHAO R X, LIU J, FENG J, et al. Microbial community composition and metabolic functions in landfill leachate from different landfills of China[J]. Sci Total Environ, 2021, 767:144861.
    [4] MORADI M, GHANBARI F. Application of response surface method for coagulation process in leachate treatment as pretreatment for Fenton process:biodegradability improvement[J]. Journal of Water Process Engineering, 2014, 4:67-73.
    [5] ZHANG Y Q, ZHANG J F, XIAO Y J, et al. Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H2O2and UV/persulfate[J]. Chemical Engineering Journal, 2016, 302:526-534.
    [6] LIU Z P, WU W H, SHI P, et al. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation[J]. Waste Manag, 2015, 41:111-118.
    [7] SHE Z L, ZHAO L T, ZHANG X L, et al. Partial nitrification and denitrification in a sequencing batch reactor treating high-salinity wastewater[J]. Chemical Engineering Journal, 2016, 288:207-215.
    [8] NI H C, ZHOU X T, ZHANG X Y, et al. Feasibility of using basalt fiber as biofilm Carrier to construct bio-nest for wastewater treatment[J]. Chemosphere, 2018, 212:768-776.
    [9] SHEN M Y, YURAN S, AVIV Y, et al. Electrically responsive, nanopatterned surfaces for triggered delivery of biologically active molecules into cells[J]. ACS Appl Mater Interfaces, 2019, 11(1):1201-1208.
    [10] FAN J P, JI F X, XU X Y, et al. Prediction of the effect of fine grit on the MLVSS/MLSS ratio of activated sludge[J]. Bioresour Technol, 2015, 190:51-56.
    [11] ZHANG P, FANG F, CHEN Y P, et al. Composition of EPS fractions from suspended sludge and biofilm and their roles in microbial cell aggregation[J]. Chemosphere, 2014, 117:59-65.
    [12] 蔡红梅,田子玉.苯酚-硫酸法测定草莓中总糖含量[J].吉林农业,2019(4):46.
    [13] LOWRY O H, ROSEBROUGH N J, FARR A L,等. 福林酚试剂法测定蛋白质[J]. 食品与药品, 2011, 13(3):147-151.
    [14] WANG W C, ZHAI S S, XIA Y Y, et al. Ochratoxin A induces liver inflammation:involvement of intestinal microbiota[J]. Microbiome, 2019, 7(1):151.
    [15] BOKULICH N A, KAEHLER B D, RIDEOUT J R, et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2's q2-feature-classifier plugin[J]. Microbiome, 2018, 6(1):90.
    [16] ROHART F, GAUTIER B, SINGH A, et al. mixOmics:an R package for 'omics feature selection and multiple data integration[J]. PLoS Comput Biol, 2017, 13(11):e1005752.
    [17] 李长彬, 张利敏, 万莉莉,等. 纳氏试剂分光光度法测定氨氮探讨[J]. 广州化工, 2022, 50(11):106-108.
    [18] 谷东杰, 刘倩. 碱性过硫酸钾消解紫外分光光度法测定水中总氮[J]. 山东化工, 2020, 49(11):103-105.
    [19] 叶绍佐. 改进快速消解分光光度法测定高盐垃圾渗滤液中COD[J]. 化学工程师, 2021, 35(10):27-29

    ,55.
    [20] 鲁蕴甜, 杨颖, 于治森,等. 钼酸铵分光光度法测定总磷的影响因素探讨[J]. 绿色科技, 2021, 23(18):122-123.
    [21] RAMASWAMI S, JALAL UDDIN F M, BENRENDT J, et al. High-rate nitrification of saline wastewaters using fixed-bed reactors[J]. J Environ Manage, 2019, 243:444-452.
    [22] JI B X, ZHANG H N, ZHOU L, et al. Effect of the rapid increase of salinity on anoxic-oxic biofilm reactor for treatment of high-salt and high-ammonia-nitrogen wastewater[J]. Bioresour Technol, 2021, 337:125363.
    [23] WANG J X, LI Z J, WANG Q, et al. Achieving stably enhanced biological phosphorus removal from aerobic granular sludge system via phosphorus rich liquid extraction during anaerobic period[J]. Bioresour Technol, 2022, 346:126439.
    [24] LIU Q, WU C D, BIN L Y, et al. Distribution characteristics of phosphorus-containing substances in a long running aerobic granular sludge-membrane bioreactor with no sludge discharge[J]. Bioresour Technol, 2022, 347:126694.
    [25] MOCAN L, ILIE I, MATEA C, et al. Surface plasmon resonance-induced photoactivation of gold nanoparticles as bactericidal agents against methicillin-resistant Staphylococcus aureus[J]. Int J Nanomedicine, 2014, 9:1453-1461.
    [26] YAO J C, LI W, OU D, et al. Performance and granular characteristics of salt-tolerant aerobic granular reactors response to multiple hypersaline wastewater[J]. Chemosphere, 2021, 265:129170.
    [27] PENG T, WANG Y Y, WANG J Q, et al. Effect of different forms and components of EPS on sludge aggregation during granulation process of aerobic granular sludge[J]. Chemosphere, 2022, 303(Pt 2):135116.
    [28] CORSINO S F, CAPODICI M, TORREGROSSA M, et al. Physical properties and Extracellular Polymeric Substances pattern of aerobic granular sludge treating hypersaline wastewater[J]. Bioresource Technology, 2017, 229:152-159.
    [29] HE J, ZHANG Q, TAN B, et al. Understanding the effect of residual aluminum salt coagulant on activated sludge in sequencing batch reactor:performance response, activity restoration and microbial community evolution[J]. Environ Res, 2022, 212(Pt C):113449.
    [30] BAREITHER C A, WOLFE G L, MCMAHON K D, et al. Microbial diversity and dynamics during methane production from municipal solid waste[J]. Waste Manag, 2013, 33(10):1982-1992.
    [31] XU S, LU W J, LIU Y T, et al. Structure and diversity of bacterial communities in two large sanitary landfills in China as revealed by high-throughput sequencing (MiSeq)[J]. Waste Manag, 2017, 63:41-48.
    [32] MATA J A, MARTHINEZ-CANOVAS J, QUESADA E, et al. A detailed phenotypic characterisation of the type strains of Halomonas species[J]. Syst Appl Microbiol, 2002, 25(3):360-375.
    [33] SONG T, ZHANG X L, LI J, et al. A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs)[J]. Sci Total Environ, 2021, 801:149319.
    [34] POLI A, NICOAUS B, DENIZCI A A, et al. Halomonas smyrnensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium[J]. Int J Syst Evol Microbiol, 2013, 63(Pt 1):10-18.
    [35] GUI X W, LI Z L, WANG Z J. Kitchen waste hydrolysate enhances sewage treatment efficiency with different biological process compared with glucose[J]. Bioresour Technol, 2021, 341:125904.
    [36] TANG J L, WSNG X C, HU Y S, et al. Nitrogen removal enhancement using lactic acid fermentation products from food waste as external carbon sources:performance and microbial communities[J]. Bioresour Technol, 2018, 56:259-268.
  • 加载中
计量
  • 文章访问数:  51
  • HTML全文浏览量:  4
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-20
  • 网络出版日期:  2023-09-02

目录

    /

    返回文章
    返回