EFFECT OF HYPERTHERMOPHILIC PRETREATMENT ON COMPOSTING MATURATION AND BACTERIAL COMMUNITY STRUCTURE OF PUTRESCIBLE WASTE
-
摘要: 为探究高温预处理对易腐垃圾堆肥腐熟及细菌菌群结构的影响,以易腐垃圾及秸秆为原料,设置常规堆肥(CC,直接堆肥)及高温预处理堆肥(HPC,85℃高温处置4 h后堆肥)2个处理组,利用实验室自制高温预处理装置及堆肥装置堆肥。经高温预处理,HPC组物料氨基酸、还原糖含量分别提升34.2%和52.9%。堆肥过程中,2个试验组均可在16 d内腐熟(C/N<18、种子发芽指数(GI)>70%),而高温预处理能使堆体提前升温,延长高温期的同时提升腐熟度,相比CC组,HPC组积温提升40.7%,堆肥结束时种子发芽指数提升35%,腐殖化指数提高40.2%。堆肥升温期乳酸杆菌(Lactobacillus)等为相对优势菌属,堆肥高温期芽孢杆菌(Bacillus)为优势菌属,堆肥腐熟期嗜热裂孢菌(Thermobifida)等菌属相对丰度提高。高温预处理有利于嗜热菌群特别是芽孢杆菌(Bacillus)的富集,HPC组堆肥前期芽孢杆菌(Bacillus)相对丰度达到63%,促进堆体有机质消耗及升温,堆肥后期由于有机质的大量降解,刺激细菌菌群由降解有机物向着促进堆体腐熟的功能进化,以实现堆肥快速腐熟。Abstract: To explore the effects of hyperthermophilic pretreatment on the maturity and bacterial community of putrescible waste composting, using putrescible waste and straw as raw materials, two treatments were set up:conventional composting (CC) and hyperthermophilic pretreatment composting (HPC, 4 h, 85℃). Compost was carried out using a laboratory-made hyperthermophilic pretreatment reactor and a composting reactor. After hyperthermophilic pretreatment, the contents of amino acid and reducing sugar in the HPC group increased by 34.2% and 52.9%. The results showed that both groups could get mature within 16 days (C/N<18, GI>70%), and hyperthermophilic pretreatment could increase the temperature of the compost pile in advance, prolong the high-temperature period and improve the maturity. Compared with the CC group, the HPC group had a 40.7% increase in temperature accumulation, a 35% increase in seed germination index, and a 40.2% increase in the humification index, at the end of composting. Lactobacillus was the dominant genus during the initial phase of composting, Bacillus was the dominant genus during the thermophilic phase, and Thermobifida was the relatively dominant genus during the maturation phase. Hyperthermophilic pretreatment was beneficial to the enrichment of thermophilic bacterial communities, especially Bacillus. The relative abundance of Bacillus in the initial phase of composting in the HPC group reached 63%, which was conducive to the consumption of organic matter and temperature rise during composting. In the maturation phase of composting, due to the degradation of organic matter, the bacterial community was stimulated to evolve from the function of degrading organic matter to promoting compost maturity.
-
Key words:
- putrescible waste /
- composting /
- hyperthermophilic pretreatment /
- humification /
- bacterial community
-
[1] 杨东海,华煜,武博然,等. 双碳背景下有机固废资源化处理处置技术发展思考[J]. 环境工程, 2022, 40(12):1-8. [2] 蒯伟,徐艳,李厚禹,等. 易腐垃圾处理技术及其效果研究进展[J]. 农业资源与环境学报, 2022, 39(2):356-363. [3] CERDA A, ARTOLA A, FONT X, et al. Composting of food wastes:status and challenges[J]. Bioresource Technology, 2018, 248:57-67. [4] ZHANG M Q, SHI A P, AJMAL M, et al. Comprehensive review on agricultural waste utilization and high-temperature fermentation and composting[J]. Biomass Conversion and Biorefinery, 2021,13:5445-5468. [5] 曹云,黄红英,钱玉婷,等. 超高温预处理装置及其促进鸡粪稻秸好氧堆肥腐熟效果[J]. 农业工程学报, 2017, 33(13):243-250. [6] 曹云,黄红英,吴华山,等. 猪粪稻秸超高温预处理促进后续堆肥腐殖化条件优化[J]. 中国环境科学, 2019, 39(5):2055-2062. [7] HUANG Y, LI D Y, WANG L, et al. Decreased enzyme activities, ammonification rate and ammonifiers contribute to higher nitrogen retention in hyperthermophilic pretreatment composting[J]. Bioresource Technology, 2019, 272:521-528. [8] TANG Y F, DONG B, DAI X H. Hyperthermophilic pretreatment composting to produce high quality sludge compost with superior humification degree and nitrogen retention[J]. Chemical Engineering Journal, 2022, 429:132247. [9] 张红朝,张天龙. 土壤中腐殖质的组分提取分析[J]. 资源节约与环保, 2014,22(8):146-154. [10] 陈同斌,黄启飞,高定,等. 城市污泥好氧堆肥过程中积温规律的探讨[J]. 生态学报, 2002(6):911-915. [11] LIU X, WANG W, GAO X B,et al. Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste[J]. Waste Management, 2012, 32(2):249-255. [12] 欧蓓,薛映,肖可可,等. 添加秸秆堆肥处理厨余垃圾过程中蛋白类物质转化及微生物群落研究[J]. 华中科技大学学报(自然科学版), 2022, 50(10):83-96. [13] CAO Y, GU J Y, ZHANG J, et al. Reduced pH is the primary factor promoting humic acid formation during hyperthermophilic pretreatment composting[J]. Journal of Environmental Management, 2022, 316:115215. [14] AJMAL M, SHI A, AWAIS M, et al. Ultra-high temperature aerobic fermentation pretreatment composting:parameters optimization, mechanisms and compost quality assessment[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105453. [15] WANG Z Q, WU D Y, LIN Y, et al. Role of temperature in sludge composting and hyperthermophilic systems:a review[J]. Bioenergy Research, 2022, 15(2):962-976. [16] SHAN G C, LI W G, LIU J, et al. Nitrogen loss, nitrogen functional genes, and humification as affected by hydrochar addition during chicken manure composting[J]. Bioresource Technology, 2023, 369.DOI: 10.1016/j.biortech.2022.128512. [17] 廖黎明,潘家琦,陈钰,等. 基于EEM与高通量技术分析中药渣投加对餐厨垃圾堆肥的影响[J]. 环境工程, 2021, 39(1):142-147. [18] 台德志,余纪鑫,张华,等. 基于光谱学技术对生物沥浸污泥与不同辅料堆肥过程中富里酸的研究[J]. 环境工程, 2022,41(3):119-128. [19] 张强,席北斗,杨津津,等. 不同物料堆肥富里酸的结构特征的研究[J]. 中国环境科学, 2021, 41(2):763-770. [20] 徐欣怡,彭韵,李芯雯,等. 短期高温预处理对餐厨垃圾堆肥进程及产品质量的影响[J]. 环境科学学报, 2023, 43(3):255-264. [21] ZHOU Y, SELVAM A, WONG J. Evaluation of humic substances during co-composting of food waste, sawdust and chinese medicinal herbal residues[J]. Bioresource Technology, 2014, 168:229-234. [22] DOANE T A, DEVEVRE O C, HORWATH W R. Short-term soil carbon dynamics of humic fractions in low-input and organic cropping systems[J]. Geoderma, 2003, 114(3/4):319-331. [23] 李文兵,毕江涛,刘鹏,等. 牛粪好氧堆肥发酵微生物群落结构演替与环境因子和腐熟度的相关性[J]. 环境工程, 2022, 40(1):69-77. [24] 王秀红,李欣欣,史向远,等. 玉米秸秆不同发酵时期理化性状和细菌群落多样性[J]. 华北农学报, 2018, 33(3):144-152. [25] GUO Y X, CHEN Q J, QIN Y, et al. Succession of the microbial communities and function prediction during short-term peach sawdust-based composting[J]. Bioresource Technology, 2021, 332:125079. [26] WANG P, MA J, WANG Z,et al. Di-N-Butyl phthalate negatively affects humic acid conversion and microbial enzymatic dynamics during composting[J]. Journal of Hazardous Materials, 2022, 436.DOI: 10.1016/j.jhazmat.2022.129306. [27] PAN S J, WANG G, CHEN H, et al. Building a framework of aerobic deer manure/corn stover composting with black liquor/microbial inoculation[J]. Biomass Conversion and Biorefinery, 2021.DOI: 10.1007/S13399-021-01792-4. [28] TRAN Q, MIMOTO H, KOYAMA M,et al. Lactic acid bacteria modulate organic acid production during early stages of food waste composting[J]. Science of the Total Environment, 2019, 687:341-347. [29] NAKASAKI K, HIRAI H. Temperature control strategy to enhance the activity of yeast inoculated into compost raw material for accelerated composting[J]. Waste Management, 2017, 65:29-36. [30] STEGER K, JARVIS A, VASARA T, et al. Effects of differing temperature management on development of actinobacteria populations during composting[J]. Research in Microbiology, 2007, 158(7):617-624. [31] ZHAO Y X, LOU Y C, QIN W Z, et al. Interval aeration improves degradation and humification by enhancing microbial interactions in the composting process[J]. Bioresource Technology, 2022, 358.DOI: 10.1016/j.biortech.2022.127296. [32] ROBLEDO-MAHON, GOMEZ-SILVAN C, ANDERSEN G L,et al. Assessment of bacterial and fungal communities in a full-scale thermophilic sewage sludge composting pile under a semipermeable cover[J]. Bioresource Technology, 2020, 298:122550. [33] ZHOU G X, QIU X W, CHEN L, et al. Succession of organics metabolic function of bacterial community in response to addition of earthworm casts and zeolite in maize straw composting[J]. Bioresource Technology, 2019, 280:229-238. [34] DANG Q L, ZHAO X Y, YANG T X, et al. Coordination of bacterial biomarkers with the dominant microbes enhances triclosan biodegradation in soil amended with food waste compost and cow dung compost[J]. Science of the Total Environment, 2022, 824.DOI: 10.1016/j.scitotenv.2022.153837.
点击查看大图
计量
- 文章访问数: 142
- HTML全文浏览量: 22
- PDF下载量: 6
- 被引次数: 0