CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米镍-铁/介孔氧化铝的制备及其三氯乙烯还原脱氯活性研究

卫建军 葛毅捷

卫建军, 葛毅捷. 纳米镍-铁/介孔氧化铝的制备及其三氯乙烯还原脱氯活性研究[J]. 环境工程, 2023, 41(6): 132-142,173. doi: 10.13205/j.hjgc.202306018
引用本文: 卫建军, 葛毅捷. 纳米镍-铁/介孔氧化铝的制备及其三氯乙烯还原脱氯活性研究[J]. 环境工程, 2023, 41(6): 132-142,173. doi: 10.13205/j.hjgc.202306018
WEI Jianjun, GE Yijie. PREPARATION OF BIMETALLIC Ni-Fe NANOPARTICLES SUPPORTED ON MESOPOROUS ALUMINA FOR REDUCTIVE DECHLORINATION TOWARD TRICHLOROETHYLENE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 132-142,173. doi: 10.13205/j.hjgc.202306018
Citation: WEI Jianjun, GE Yijie. PREPARATION OF BIMETALLIC Ni-Fe NANOPARTICLES SUPPORTED ON MESOPOROUS ALUMINA FOR REDUCTIVE DECHLORINATION TOWARD TRICHLOROETHYLENE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 132-142,173. doi: 10.13205/j.hjgc.202306018

纳米镍-铁/介孔氧化铝的制备及其三氯乙烯还原脱氯活性研究

doi: 10.13205/j.hjgc.202306018
基金项目: 

中央高校基本科研业务费(BUCT-ZZ1202)

详细信息
    作者简介:

    卫建军(1973-),副教授,主要研究方向为环境监测、纳米铁脱氯降解氯代有机污染物等。weijj@mail.buct.edu.cn

    通讯作者:

    卫建军(1973-),副教授,主要研究方向为环境监测、纳米铁脱氯降解氯代有机污染物等。weijj@mail.buct.edu.cn

PREPARATION OF BIMETALLIC Ni-Fe NANOPARTICLES SUPPORTED ON MESOPOROUS ALUMINA FOR REDUCTIVE DECHLORINATION TOWARD TRICHLOROETHYLENE

  • 摘要: 将纳米镍-铁双金属粒子负载于介孔氧化铝,使其分散性、悬浮稳定性、脱氯能力及活性持久性均得到极大提高,可更高效地用于脱氯降解地下水中的氯代烃。首先制备介孔氧化铝载体,其最可几孔径、孔容和比表面积分别为7.65 nm、0.68 cm3/g和350 m2/g;然后采用水解共沉淀-氧化-晶化法制得镍-铁层状双金属氢氧化物/介孔氧化铝,将其在10% H2中400℃煅烧后得到纳米镍-铁(FeNi3)/介孔氧化铝。因介孔氧化铝对纳米镍-铁的分散作用及介孔结构的限域效应,其上纳米镍-铁(FeNi3)粒子分散均匀,晶粒小至11.5 nm;而未被负载的纳米镍-铁粒子发生团聚,粒径为50~100 nm。纳米镍-铁/介孔氧化铝的水悬浮液12 h仍未沉降,而纳米镍-铁在2 min内完全沉降。采用地下水中三氯乙烯平均浓度1000倍作为初始浓度(23.7 mg/L),经48 h反应,纳米镍-铁/介孔氧化铝对三氯乙烯的转化率为12.03%,比纳米镍-铁提高了约9倍;同时三氯乙烯仅剩余0.41%,说明纳米镍-铁/介孔氧化铝也具有优异的吸附性能。纳米镍-铁/介孔氧化铝在重复使用的第4周期仍与第1周期活性相同,48 h后的二碳烃总生成量均为0.23 μmol;至第8周期仍有吸附和脱氯能力,48 h后三氯乙烯去除量和二碳烃总生成量分别为1.05,0.043 μmol;说明其具有优异的活性持久性。因此纳米镍-铁/介孔氧化铝是一种非常有前景的氯代烃污染地下水修复材料。
  • [1] PETRISOR G I, WELLS T J. Tracking chlorinated solvents in the environment. Issues in Environmental Science and Technology, No.26, Environmental Forensics[M]. London:Royal Society of Chemistry, 2008. 130-152.
    [2] EPA 816-F-09-004 National primary drinking water regulations[S].
    [3] 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水卫生标准:GB 5749-2006[S]. 2006.
    [4] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准:GB 3838-2002[S]. 2002.
    [5] 国家技术监督局. 地下水质量标准:GB/T 14848-9[S].1993.
    [6] 宋汉周,WOODBURY D A. TCE的物理化学特性及其生物降解作用——某碳酸盐岩含水层中地下水有机物污染及其去除研究之一[J]. 河海大学学报, 2000, 28(1):52-56.
    [7] SWEENY H K, WEST COVINA; FISCHER R J, CLAREMONT, both of CALIF. Reductive degradation of halogenated pesticides[P]. United States:3640821, Feb. 8, 1972.
    [8] 大连理工大学无机化学教研室. 无机化学[M]. 5版. 北京:高等教育出版社, 2006.
    [9] VOGEL M T, CRIDDLE S C, MCCARTY L P. Transformation of halogenated aliphatic compounds[J]. Environmental Science & Technology, 1987, 21(8):722-736.
    [10] SU C M, PULS W R. Kinetics of trichloroethene reduction by zerovalent iron and tin:pretreatment effect, apparent activation energy, and intermediate products[J]. Environmental Science & Technology, 1999, 33(1):163-168.
    [11] ARNOLD A W, BOBERTS L A. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles[J]. Environmental Science & Technology, 2000, 34(9):1794-1805.
    [12] LIU Y Q, MAJETICH A S, TILTON D R, et al. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties[J]. Environmental Science & Technology, 2005, 39(5):1338-1345.
    [13] LIU Y Q, CHOI H, DIONYSIOU D, et al. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron[J]. Chemistry of Materials, 2005, 17(21):5315-5322.
    [14] CHUN L C, BAER R D, MATSON W D, et al. Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd, and Ni[J]. Environmental Science & Technology, 2010, 44(13):5079-5085.
    [15] SCHRICK B, BLOUGH L J, JONES D A, et al. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles[J]. Chemistry of Materials, 2002, 14(12):5140-5147.
    [16] ANANG E, LIU H, FAN X Y, et al. Compositional evolution of nanoscale zero valent iron and 2,4-dichlorophenol during dechlorination by attapulgite supported Fe/Ni nanoparticles[J]. Journal of Hazardous Materials, 2021,412:125246.
    [17] XIE J T, LEI C, CHEN W Q, et al. Catalytic properties of transition metals modified nanoscale zero-valent iron for simultaneous removal of 4-chlorophenol and Cr(Ⅵ):efficacy, descriptor and reductive mechanisms[J]. Journal of Hazardous Materials, 2021, 403:123827.
    [18] CHOI H, AGARWAL S, Al-ABED S R. Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd:mechanistic aspects and reactive capping barrier concept[J]. Environmental Science & Technology, 2009, 43(2):488-493.
    [19] LIU Z T, DING C C, GAO P T, et al. Enhanced dechlorination of 2,6-dichlorophenol by carbon nanotubes supported Fe/Ni nanoparticles:characterization, influencing factors, and kinetics[J]. Colloids and Surfaces A, 2020, 585:124089.
    [20] ZHENG T H, ZHAN J J, HE J B, et al. Reactivity characteristics of nanoscale zerovalent iron-silica composites for trichloroethylene remediation[J]. Environmental Science & Technology, 2008, 42(12):4494-4499.
    [21] QIU X H, FANG Z Q, LIANG B, et al. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres[J]. J. Hazard. Mater., 2011, 193:70-81.
    [22] CAI W Q, YU J G, ANAND C, et al. Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties[J]. Chemistry of Materials, 2011, 23(5):1147-1157.
    [23] XU X, MEGARAJAN K S, XIA X F, et al. Effect of reduction temperature on the structure and catalytic performance of mesoporous Ni-Fe-Al2O3 in oxidative dehydrogenation of ethane[J]. New Journal of Chemistry, 2020, 44(44):18994-19001.
    [24] MARINHO A L ANDRÉ, TONIOLO S F, NORONHA B F, et al. Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane[J]. Applied Catalysis B:Environmental, 2021, 281:119459.
    [25] BADOGA S, KAMATH G, DALAI A. Effects of promoters (Mn, Mg, Co and Ni) on the Fischer-Tropsch activity and selectivity of KCuFe/mesoporous-alumina catalyst[J]. Applied Catalysis A, General, 2020, 607:117861.
    [26] ZHANG Z L, ZHU Y H, ASAKURA H, et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation[J]. Nature Communications, 2017,8:16100.
    [27] MEBRAHTU C, KREBS F, PERATHONER S, et al. Hydrotalcite based Ni-Fe/(Mg, Al)O<i>x catalysts for CO2 methanation-tailoring Fe content for improved CO dissociation, basicity, and particle size. Catalysis Science & Technology, 2018, 8(4):1016-1027.
    [28] GAO W, ZHAO Y F, LIU J M, et al. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catalysis Science & Technology, 2013, 3(5):1324-1332.
    [29] WU Q L, ZHANG F, YANG J P, et al. Synthesis of ordered mesoporous alumina with large pore sizes and hierarchical structure[J]. Microporous and Mesoporous Materials, 2011, 143:406-412.
    [30] THOMMES M, KANEKO K, NEIMARK V A, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure & Applied Chemistry, 2015, 87(9/10):1051-1069.
    [31] SING K S W, EVERETT H D, HAUL W A R, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure & Applied Chemistry, 1985, 57(4):603-619.
    [32] 傅献彩, 沈文霞, 姚天扬,等. 物理化学下册[M]. 5版. 北京:高等教育出版社, 2006.
    [33] 安哲, 何静, 段雪. 层状材料及催化[J]. 中国科学(化学), 2012, 42(4):390-405.
    [34] CAILLERIE JBDDL, KERMAREC M, CLAUSE O. Impregnation of γ-alumina with Ni(Ⅱ) or Co(Ⅱ) ions at neutral pH:hydrotalcite-type coprecipitate formation and characterization[J]. Journal of the Ameircan Chemical Society, 1995, 117(46):11471-11481.
    [35] ZHANG N L, LUO J, BLOWERS P, et al. Understanding trichloroethylene chemisorption to iron surfaces using density functional theory[J]. Environmental Science & Technology, 2008, 42(6):2015-2020.
    [36] ZHU B W, LIM T T. Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles:reactive sites, catalyst stability, particle aging, and regeneration[J]. Environmental Science & Technology, 2007, 41(21):7523-7529.
  • 加载中
计量
  • 文章访问数:  68
  • HTML全文浏览量:  10
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-07
  • 网络出版日期:  2023-09-02

目录

    /

    返回文章
    返回