PREPARATION OF BIMETALLIC Ni-Fe NANOPARTICLES SUPPORTED ON MESOPOROUS ALUMINA FOR REDUCTIVE DECHLORINATION TOWARD TRICHLOROETHYLENE
-
摘要: 将纳米镍-铁双金属粒子负载于介孔氧化铝,使其分散性、悬浮稳定性、脱氯能力及活性持久性均得到极大提高,可更高效地用于脱氯降解地下水中的氯代烃。首先制备介孔氧化铝载体,其最可几孔径、孔容和比表面积分别为7.65 nm、0.68 cm3/g和350 m2/g;然后采用水解共沉淀-氧化-晶化法制得镍-铁层状双金属氢氧化物/介孔氧化铝,将其在10% H2中400℃煅烧后得到纳米镍-铁(FeNi3)/介孔氧化铝。因介孔氧化铝对纳米镍-铁的分散作用及介孔结构的限域效应,其上纳米镍-铁(FeNi3)粒子分散均匀,晶粒小至11.5 nm;而未被负载的纳米镍-铁粒子发生团聚,粒径为50~100 nm。纳米镍-铁/介孔氧化铝的水悬浮液12 h仍未沉降,而纳米镍-铁在2 min内完全沉降。采用地下水中三氯乙烯平均浓度1000倍作为初始浓度(23.7 mg/L),经48 h反应,纳米镍-铁/介孔氧化铝对三氯乙烯的转化率为12.03%,比纳米镍-铁提高了约9倍;同时三氯乙烯仅剩余0.41%,说明纳米镍-铁/介孔氧化铝也具有优异的吸附性能。纳米镍-铁/介孔氧化铝在重复使用的第4周期仍与第1周期活性相同,48 h后的二碳烃总生成量均为0.23 μmol;至第8周期仍有吸附和脱氯能力,48 h后三氯乙烯去除量和二碳烃总生成量分别为1.05,0.043 μmol;说明其具有优异的活性持久性。因此纳米镍-铁/介孔氧化铝是一种非常有前景的氯代烃污染地下水修复材料。Abstract: Bimetallic nickel-iron nanoparticles were supported on mesoporous alumina in order to improve their dispersion performance, suspension ability and mobility in groundwater, as well as aqueous dechlorination reactivity and reactive longevity toward chlorinated organic contaminants in groundwater. Mesoporous alumina with a pore diameter of 7.65 nm, a pore volume of 0.68 cm3/g, and a specific surface area of 350 m2/g was prepared. Then bimetallic Ni-Fe (FeNi3) nanoparticles were produced on mesoporous alumina by calcining in hydrogen gas (10% by volume) at 400℃. A nickel-iron layered double hydroxides was impregnated onto the carrier. Bare Ni-Fe nanoparticles were 50~100 nm in diameter and agglomerated together. In comparison, the crystallite size of the supported Ni-Fe nanoparticles decreased to 11.5 nm due to the interfacial interaction between the nanoparticles and the mesoporous alumina, and the confinement effect of the mesoporous structure. In addition, the dispersion performance of the supported Ni-Fe nanoparticles was dramatically enhanced. The composite of Ni-Fe nanoparticles and mesoporous alumina, i.e., Ni-Fe-nanoparticles/mesoporous-alumina, remained suspending in water within 12 h, whereas bare Ni-Fe nanoparticles precipitated in merely 2 min. When trichloroethylene was loaded at an initial concentration of 23.7 mg/L, i.e., 1000 times the average concentration in groundwater, the overall yield of two-carbon hydrocarbons was 12.03% in 48 h by the supported Ni-Fe nanoparticles, which was approximately 9 times greater than the bare counterpart. Furthermore, Ni-Fe-nanoparticles/mesoporous-alumina showed excellent adsorption activity, and only 0.41% of trichloroethylene remained in 48 h. The composite showed a remarkable reactive longevity in multi-run use, with the yield of two-carbon hydrocarbons during the 4th run being the same as the 1st run (0.23 μmol). Furthermore, it still exhibited adsorption and dechlorination activity until the 8th run, during which the degradation of trichloroethylene and yield of two-carbon hydrocarbons were 1.05 μmol and 0.043 μmol, respectively. The results indicate that the composite is a promising material for remediation of groundwater contaminated by chlorinated organic compounds.
-
Key words:
- mesoporous alumina /
- nanoparticles /
- nickel-iron /
- bimetal /
- layered double hydroxides /
- trichloroethylene /
- dechlorination /
- groundwater
-
[1] PETRISOR G I, WELLS T J. Tracking chlorinated solvents in the environment. Issues in Environmental Science and Technology, No.26, Environmental Forensics[M]. London:Royal Society of Chemistry, 2008. 130-152. [2] EPA 816-F-09-004 National primary drinking water regulations[S]. [3] 中华人民共和国卫生部, 中国国家标准化管理委员会. 生活饮用水卫生标准:GB 5749-2006[S]. 2006. [4] 国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准:GB 3838-2002[S]. 2002. [5] 国家技术监督局. 地下水质量标准:GB/T 14848-9[S].1993. [6] 宋汉周,WOODBURY D A. TCE的物理化学特性及其生物降解作用——某碳酸盐岩含水层中地下水有机物污染及其去除研究之一[J]. 河海大学学报, 2000, 28(1):52-56. [7] SWEENY H K, WEST COVINA; FISCHER R J, CLAREMONT, both of CALIF. Reductive degradation of halogenated pesticides[P]. United States:3640821, Feb. 8, 1972. [8] 大连理工大学无机化学教研室. 无机化学[M]. 5版. 北京:高等教育出版社, 2006. [9] VOGEL M T, CRIDDLE S C, MCCARTY L P. Transformation of halogenated aliphatic compounds[J]. Environmental Science & Technology, 1987, 21(8):722-736. [10] SU C M, PULS W R. Kinetics of trichloroethene reduction by zerovalent iron and tin:pretreatment effect, apparent activation energy, and intermediate products[J]. Environmental Science & Technology, 1999, 33(1):163-168. [11] ARNOLD A W, BOBERTS L A. Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles[J]. Environmental Science & Technology, 2000, 34(9):1794-1805. [12] LIU Y Q, MAJETICH A S, TILTON D R, et al. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties[J]. Environmental Science & Technology, 2005, 39(5):1338-1345. [13] LIU Y Q, CHOI H, DIONYSIOU D, et al. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron[J]. Chemistry of Materials, 2005, 17(21):5315-5322. [14] CHUN L C, BAER R D, MATSON W D, et al. Characterization and reactivity of iron nanoparticles prepared with added Cu, Pd, and Ni[J]. Environmental Science & Technology, 2010, 44(13):5079-5085. [15] SCHRICK B, BLOUGH L J, JONES D A, et al. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles[J]. Chemistry of Materials, 2002, 14(12):5140-5147. [16] ANANG E, LIU H, FAN X Y, et al. Compositional evolution of nanoscale zero valent iron and 2,4-dichlorophenol during dechlorination by attapulgite supported Fe/Ni nanoparticles[J]. Journal of Hazardous Materials, 2021,412:125246. [17] XIE J T, LEI C, CHEN W Q, et al. Catalytic properties of transition metals modified nanoscale zero-valent iron for simultaneous removal of 4-chlorophenol and Cr(Ⅵ):efficacy, descriptor and reductive mechanisms[J]. Journal of Hazardous Materials, 2021, 403:123827. [18] CHOI H, AGARWAL S, Al-ABED S R. Adsorption and simultaneous dechlorination of PCBs on GAC/Fe/Pd:mechanistic aspects and reactive capping barrier concept[J]. Environmental Science & Technology, 2009, 43(2):488-493. [19] LIU Z T, DING C C, GAO P T, et al. Enhanced dechlorination of 2,6-dichlorophenol by carbon nanotubes supported Fe/Ni nanoparticles:characterization, influencing factors, and kinetics[J]. Colloids and Surfaces A, 2020, 585:124089. [20] ZHENG T H, ZHAN J J, HE J B, et al. Reactivity characteristics of nanoscale zerovalent iron-silica composites for trichloroethylene remediation[J]. Environmental Science & Technology, 2008, 42(12):4494-4499. [21] QIU X H, FANG Z Q, LIANG B, et al. Degradation of decabromodiphenyl ether by nano zero-valent iron immobilized in mesoporous silica microspheres[J]. J. Hazard. Mater., 2011, 193:70-81. [22] CAI W Q, YU J G, ANAND C, et al. Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties[J]. Chemistry of Materials, 2011, 23(5):1147-1157. [23] XU X, MEGARAJAN K S, XIA X F, et al. Effect of reduction temperature on the structure and catalytic performance of mesoporous Ni-Fe-Al2O3 in oxidative dehydrogenation of ethane[J]. New Journal of Chemistry, 2020, 44(44):18994-19001. [24] MARINHO A L ANDRÉ, TONIOLO S F, NORONHA B F, et al. Highly active and stable Ni dispersed on mesoporous CeO2-Al2O3 catalysts for production of syngas by dry reforming of methane[J]. Applied Catalysis B:Environmental, 2021, 281:119459. [25] BADOGA S, KAMATH G, DALAI A. Effects of promoters (Mn, Mg, Co and Ni) on the Fischer-Tropsch activity and selectivity of KCuFe/mesoporous-alumina catalyst[J]. Applied Catalysis A, General, 2020, 607:117861. [26] ZHANG Z L, ZHU Y H, ASAKURA H, et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation[J]. Nature Communications, 2017,8:16100. [27] MEBRAHTU C, KREBS F, PERATHONER S, et al. Hydrotalcite based Ni-Fe/(Mg, Al)O<i>x catalysts for CO2 methanation-tailoring Fe content for improved CO dissociation, basicity, and particle size. Catalysis Science & Technology, 2018, 8(4):1016-1027. [28] GAO W, ZHAO Y F, LIU J M, et al. Catalytic conversion of syngas to mixed alcohols over CuFe-based catalysts derived from layered double hydroxides[J]. Catalysis Science & Technology, 2013, 3(5):1324-1332. [29] WU Q L, ZHANG F, YANG J P, et al. Synthesis of ordered mesoporous alumina with large pore sizes and hierarchical structure[J]. Microporous and Mesoporous Materials, 2011, 143:406-412. [30] THOMMES M, KANEKO K, NEIMARK V A, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure & Applied Chemistry, 2015, 87(9/10):1051-1069. [31] SING K S W, EVERETT H D, HAUL W A R, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure & Applied Chemistry, 1985, 57(4):603-619. [32] 傅献彩, 沈文霞, 姚天扬,等. 物理化学下册[M]. 5版. 北京:高等教育出版社, 2006. [33] 安哲, 何静, 段雪. 层状材料及催化[J]. 中国科学(化学), 2012, 42(4):390-405. [34] CAILLERIE JBDDL, KERMAREC M, CLAUSE O. Impregnation of γ-alumina with Ni(Ⅱ) or Co(Ⅱ) ions at neutral pH:hydrotalcite-type coprecipitate formation and characterization[J]. Journal of the Ameircan Chemical Society, 1995, 117(46):11471-11481. [35] ZHANG N L, LUO J, BLOWERS P, et al. Understanding trichloroethylene chemisorption to iron surfaces using density functional theory[J]. Environmental Science & Technology, 2008, 42(6):2015-2020. [36] ZHU B W, LIM T T. Catalytic reduction of chlorobenzenes with Pd/Fe nanoparticles:reactive sites, catalyst stability, particle aging, and regeneration[J]. Environmental Science & Technology, 2007, 41(21):7523-7529.
点击查看大图
计量
- 文章访问数: 75
- HTML全文浏览量: 13
- PDF下载量: 3
- 被引次数: 0