中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于VMD-CEEMD分解和LSTM的PM2.5和O3浓度预测模型

周建国 王剑宇 韦斯悌

周建国, 王剑宇, 韦斯悌. 基于VMD-CEEMD分解和LSTM的PM2.5和O3浓度预测模型[J]. 环境工程, 2023, 41(6): 157-165,221. doi: 10.13205/j.hjgc.202306021
引用本文: 周建国, 王剑宇, 韦斯悌. 基于VMD-CEEMD分解和LSTM的PM2.5和O3浓度预测模型[J]. 环境工程, 2023, 41(6): 157-165,221. doi: 10.13205/j.hjgc.202306021
ZHOU Jianguo, WANG Jianyu, WEI Siti. PREDICTION OF PM2.5 AND OZONE CONCENTRATION BASED ON VMD-CEEMD DECOMPOSITION AND LSTM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 157-165,221. doi: 10.13205/j.hjgc.202306021
Citation: ZHOU Jianguo, WANG Jianyu, WEI Siti. PREDICTION OF PM2.5 AND OZONE CONCENTRATION BASED ON VMD-CEEMD DECOMPOSITION AND LSTM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 157-165,221. doi: 10.13205/j.hjgc.202306021

基于VMD-CEEMD分解和LSTM的PM2.5和O3浓度预测模型

doi: 10.13205/j.hjgc.202306021
详细信息
    作者简介:

    周建国(1965-),男,博士,教授,主要从事大气污染治理、电厂环境技术经济分析与评价的研究。

    通讯作者:

    王剑宇(1998-),男,硕士,主要从事大气污染治理的研究。869487965@qq.com

PREDICTION OF PM2.5 AND OZONE CONCENTRATION BASED ON VMD-CEEMD DECOMPOSITION AND LSTM

  • 摘要: 针对现有PM2.5和O3预测模型精度不高的问题,基于南京市2015-01-01-2021-06-30期间的PM2.5和O3日平均浓度数据,构建了一种互补集合经验模态分解(CEEMD)二次分解和长短期记忆神经网络(LSTM)的污染物浓度预测模型。通过变分模式分解(VMD)将污染物浓度序列进行一次分解,利用分解后的残余分量进行CEEMD二次分解,再将分解后的所有子序列通过LSTM进行预测,最后将输出结果重构得到最终结果。结果表明:在南京市场景下进行预测时,与3种比较模型相比,所提出的模型具有优越性和便捷性,其O3和PM2.5浓度的RMSE分别为16.47、5.12。该研究结果可为分析O3和PM2.5污染趋势提供参考。
  • [1] BERO B G, RAZA A, FORSBERG B, et al. Short-term exposure to ozone and mortality in subjects with and without previous cardiovascular disease[J]. Epidemiology. 2016, 27(5):663-669.
    [2] LU X, ZHANG L, WANG X, et al. Rapid increases in warm-season surface ozone and resulting health impact in China since 2013[J]. Environmental Science & Technology Letters. 2020, 7(4):240-247.
    [3] WU W L, XUE W B, ZHENG Y X, et al. Diurnal regulation of VOCs may not be effective in controlling ozone pollution in China[J].Atmospheric Environment, 2021, 256:118442.
    [4] LOAIZA-CEBALLOS M C, MARIN-PALMA D, ZAPATA W, et al. Viral respiratory infections and air pollutants[J]. Air Quality, Atmosphere & Health, 2021,187:109650.
    [5] 赵晓东,徐浩然,郭志萍,等.基于区间二型模糊神经网络的臭氧浓度预测[J].计算机应用与软件,2022,39(6):329-335.
    [6] PENDLEBURY D, GRAVEL S, MORAN M D, et al. Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions[J]. Atmospheric Environment, 2018, 174:148-170.
    [7] PARK S Y, LEE S H, LEE H W. Assimilation of wind profiler observations and its impact on three-dimensional transport of ozone over the Southeast Korean Peninsula[J]. Atmospheric Environment, 2014, 99:660-672.
    [8] PENDLEBURY D, GRAVEL S, MORAN M D, et al. Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions[J]. Atmospheric Environment, 2018, 174:148-170.
    [9] LUNA A S, PAREDES M L L, DE OLIVEIRA G C G, et al. Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil[J]. Atmospheric Environment, 2014, 98:98-104.
    [10] 刘宇轩,应方,叶旭红,等. 基于后向传播神经网络的PM2.5和臭氧预测研究[J]. 能源工程,2020(5):76-83.
    [11] CHEN S, WANG J, ZHANG H. A hybrid PSO-SVM model based on clustering algorithm for short-term atmospheric pollutant concentration forecasting[J]. Technological Forecasting and Social Change, 2019, 146:41-54.
    [12] 董红召,王乐恒,唐伟,等.融合时空特征的PCA-PSO-SVM臭氧(O3)预测方法研究[J].中国环境科学,2021,41(2):596-605.
    [13] 邢红涛,郭江龙,刘书安,等.基于CNN-LSTM混合神经网络模型的NO<i>x排放预测[J]. 电子测量技术,2022,45(2):98-103.
    [14] WANG L L, LI X, BAI Y L. Short-term wind speed prediction using an extreme learning machine model with error correction[J]. Energy Conversion and Management, 2018, 162:239-250.
    [15] 吴子伯,崔云霞,曹炜琦,等.基于CEEMD-BiGRU模型的徐州市大气污染物浓度预测[J].环境工程,2022,40(9):9-18.
    [16] 丁子昂,乐曹伟,吴玲玲,等.基于CEEMD-Pearson和深度LSTM混合模型的PM2.5浓度预测方法[J].计算机科学,2020,47(增刊1):444-449.
    [17] CABANEROS S M, CALAUTIT J K, HUGHES B. Spatial estimation of outdoor NO2 levels in Central London using deep neural networks and a wavelet decomposition technique[J]. Ecological Modelling, 2020, 424:109017.
    [18] AHANI I K, SALARI M, SHADMAN A. An ensemble multi-step-ahead forecasting system for fine particulate matter in urban areas[J]. Journal of Cleaner Production, 2020, 263:120983.
    [19] ZHU S L, QIU X L, YIN Y R, et al. Two-step-hybrid model based on data preprocessing and intelligent optimization algorithms (CS and GWO) for NO2 and SO2 forecasting[J]. Atmospheric Pollution Research, 2019, 10(4):1326-1335.
    [20] HU H L, WANG L, TAO R. Wind speed forecasting based on variational mode decomposition and improved echo state network[J]. Renewable Energy, 2021, 164:729-751.
    [21] SHARMA V, PAREY A. Extraction of weak fault transients using variational mode decomposition for fault diagnosis of gearbox under varying speed[J]. Engineering Failure Analysis, 2020, 107:104204.
    [22] WANG F, YU L, WU A P. Forecasting the electronic waste quantity with a decomposition-ensemble approach[J]. Waste Management, 2021, 120:828-838.
    [23] 何哲祥,李雷.一种基于小波变换和LSTM的大气污染物浓度预测模型[J].环境工程,2021,39(3):111-119.
    [24] 梁涛,谢高锋,米大斌,等.基于CEEMDAN-SE和LSTM神经网络的PM10浓度预测[J].环境工程,2020,38(2):107-113.
  • 加载中
计量
  • 文章访问数:  157
  • HTML全文浏览量:  23
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-13
  • 网络出版日期:  2023-09-02

目录

    /

    返回文章
    返回