ANALYSIS OF SPATIOTEMPORAL EVOLUTION OF WATER RESOURCES CARRYING CAPACITY IN KUNMING BASED ON ENTROPY WEIGHT METHOD AND MARKOV MODEL
-
摘要: 为揭示昆明市时空序列水资源承载力转移演变规律,为区域水资源优化配置和可持续开发利用提供决策支持,构建了基于熵权法的水资源承载力综合评价模型,并借助马尔可夫转移模型,对对象研究区内各县(区)25年间的水资源承载力的时空转移和演化特征进行分析。结果表明:研究区水资源承载能力总体偏低,空间差异明显。其中,昆明市北部及东北部区域是资源性缺水的水资源承载力较低区,研究期内水资源承载力多年平均值为0.26~0.38;中部及西南部区域经济发达、人口密度最大,是供水性短缺的水资源承载能力较低区,研究期内水资源承载力多年平均值为0.30~0.41;东南部区域降水量相对丰富,人口密度低,水资源承载能力相对较高,研究期内水资源承载力多年平均值为0.37~0.54。此外,研究区水资源承载能力总体上空间转移变化频次较高。其中,中部地区在研究期5个时段内变化频次最大,达4次之多,表明研究区水资源承载力水平阶段性变化较大,这与研究区降水量时空分布极不均衡、水资源供需不平衡、季节性缺水和人口分布特征有较大关系。Abstract: In order to reveal the changing law of water resources carrying capacity (WRCC) in Kunming and provide decision support for regional water resources allocation and sustainable utilization, this paper constructed a comprehensive evaluation model of WRCC based on the entropy weight method and Markov transfer model, and analyzed the results of the spatiotemporal transfer and evolution characteristics of WRCC in the study area over the past 25 years. The results showed that the overall water resource carrying capacity of the research area is relatively low, with significant spatial differences. Among them, the northern and northeastern regions are areas with low water resource carrying capacity due to resource scarcity, with an average annual water resource carrying capacity of 0.26 to 0.38 during the research period; the central and southwest regions have developed economies and the largest population density, and are low in water resources carrying capacity due to water shortage. The multi-year average value of water resources carrying capacity in the study period is 0.30 to 0.41; the southeast region is relatively rich in precipitation, low in population density, and relatively higher in water resources carrying capacity. The multi-year average value of water resources carrying capacity in the study period is 0.37 to 0.54. In addition, the overall spatial transfer and change frequency of water resource carrying capacity in the research area is relatively high. Among them, the frequency of changes in the central region reached a maximum of four times during the five research periods, indicating that the level of water resource carrying capacity in the study area has a significant periodic change, which is closely related to the extremely uneven spatiotemporal distribution of precipitation, imbalanced supply and demand of water resources, seasonal water scarcity, and population distribution in the study area.
-
[1] 金菊良, 郭涵, 李征, 等. 基于水资源承载力动态评价的五元引力减法集对势方法[J]. 灌溉排水学报, 2021, 40(6):1-7. [2] 韩礼博, 门宝辉. 基于组合博弈论法的海河流域水资源承载力评价[J]. 水电能源科学, 2021, 39(11):61-64. [3] 张爱国, 李鑫, 张义明, 等. 城市水资源承载力评价指标体系构建:以天津市为例[J]. 安全与环境学报, 2021, 21(4):1839-1848. [4] 联合国水机制. 2020年联合国世界水发展报告[R]. 日内瓦:联合国教育科学及文化组织, 2020. [5] 田英杰, 王倩, 周蓉, 等. 水资源紧缺程度评估模型[J]. 数学建模及其应用, 2016, 5(2):73-82. [6] 代稳, 吕殿青, 王金凤, 等. 基于变权灰色关联法的长江荆南三口地区水资源短缺程度分析[J]. 长江科学院院报, 2017, 34(6):17-23. [7] 柏义生,陈涛,梁静,等.信阳市水环境承载力评价及优化对策建议[J].环境工程,2019,37(10):78-82. [8] GIKAS P, TCHOBANOGLOUS G. Sustainable use of water in the Aegean Islands[J]. Journal of Environmental Management, 2009, 90(8):2601-2611. [9] 姜文超. 城镇地区水资源(极限)承载力及其量化方法与应用研究[D]. 重庆:重庆大学, 2004. [10] KANG D, LANSEY K. Real-time demand estimation and confidence limit analysis for water distribution systems[J]. Journal of Hydraulic Engineering, 2009, 135(10):825-837. [11] 封志明, 杨艳昭, 闫慧敏, 等. 百年来的资源环境承载力研究:从理论到实践[J]. 资源科学, 2017, 39(3):379-395. [12] 宋子成, 孙以萍. 从我国淡水资源看我国现代化后能养育的最高人口数量[J]. 人口与经济, 1981(4):3-7. [13] 许有鹏. 干旱区水资源承载能力综合评价研究:以新疆和田河流域为例[J]. 自然资源学报, 1993, 8(3):229-237. [14] 傅湘, 纪昌明. 区域水资源承载能力综合评价:主成分分析法的应用[J]. 长江流域资源与环境, 1999, 8(2):168-172. [15] 封志明, 杨艳昭, 游珍. 中国人口分布的水资源限制性与限制度研究[J]. 自然资源学报, 2014, 29(10):1637-1648. [16] BRELSFORD C, ABBOTT J K. Growing into water conservation? Decomposing the drivers of reduced water consumption in Las Vegas, NV[J]. Ecological Economics, 2017, 133:99-110. [17] OJEDA A ÁLVAREZ, CLARA ROSALÍA, RAMOS M, et al. Determinants of domestic water consumption in Hermosillo, Sonora, Mexico[J]. Journal of Cleaner Production, 2016, 142:1901-1910. [18] 李少朋, 赵衡, 王富强, 等. 基于AHP-TOPSIS模型的江苏省水资源承载力评价[J]. 水资源保护, 2021, 37(3):20-25. [19] 安强, 魏传江, 贺华翔, 等. 基于模糊综合评价法的河南省中原城市群水资源承载力评价研究[J]. 节水灌溉, 2019(12):65-71. [20] 胡启玲, 董增川, 杨雁飞, 等. 基于联系数的水资源承载力状态评价模型[J]. 河海大学学报(自然科学版), 2019, 47(5):425-432. [21] 何云玲, 刘雪莲, 杨焰, 等. 县域资源环境承载力评价研究[J]. 生态经济(中文版), 2017, 33(1):124-128. [22] 袁磊, 闻珊珊, 杨昆. 快速城市化区域资源环境承载力与建设适宜性分析:以昆明市呈贡区为例[J]. 生态科学, 2019, 38(1):218-225. [23] 吴开亚, 金菊良. 基于变权重和信息熵的区域水资源安全投影寻踪评价模型[J]. 长江流域资源与环境, 2011, 20(9):1085-1091. [24] 张凤太,张军以,苏维词.基于熵权和主成分分析的岩溶区水资源安全评价:以毕节为例[J].环境工程,2016,34(3):174-179. [25] 徐政华, 曹延明. 基于熵权TOPSIS模型的长春市水资源承载力评价[J]. 安全与环境学报, 2022,22(5):2900-2907. [26] 陈培阳,朱喜钢.中国区域经济趋同:基于县级尺度的空间马尔可夫链分析[J].地理科学, 2013,33(11):1302-1308. [27] 刘瑞, 朱道林. 基于转移矩阵的土地利用变化信息挖掘方法探讨[J]. 资源科学, 2010, 32(8):1544-1550. [28] 李宝芬. 昆明市年降水量时空分布特征[C]//云南省水利学会,2016年度学术年会论文集, 2016:123-133.
点击查看大图
计量
- 文章访问数: 98
- HTML全文浏览量: 3
- PDF下载量: 6
- 被引次数: 0