INFLUENCES OF HETEROLOGOUS SUBSTANCES OCCURRED IN FOOD WASTE ON ANAEROBIC DIGESTION AND REGULATION STRATEGIES: A REVIEW
-
摘要: 厌氧消化是实现餐厨垃圾资源化利用和无害化处理的有效手段。然而,餐厨垃圾中含有的大量异源物质对厌氧体系产生潜在影响。主要探究了典型异源物质(NaCl、调味剂等)对餐厨垃圾厌氧消化效能的影响。分析发现,异源物质主要通过影响微生物群落结构(如甲烷鬃毛菌属、甲烷杆菌属、甲烷八叠球菌属等产甲烷菌)、代谢活性(如细胞膜通透性、渗透压和关键酶活性等)、微生物代谢功能及关键功能基因的表达(如ACAS和mcrA等)方式对餐厨垃圾厌氧消化效能产生抑制。然而,通过采用物理(如热、超声、生物炭吸附等)、化学(如酸、碱、高级氧化技术等)、生物(如功能菌富集、微生物驯化、酶等)等预处理手段可有效削减和调控餐厨垃圾的消化效能。最后,针对多种异源物质的协同影响以及源头分类、生化调控优化技术的结合和开发等角度进行了展望,可为餐厨垃圾厌氧消化效能的提升提供参考。Abstract: Anaerobic digestion is one of the most effective strategies for resource utilization and harmless disposal of food waste. However, the high levels of heterologous substances in food waste might exhibit negative impacts on these systems. This work mainly investigated the influences of typical heterologous substances (i.e., NaCl, condiment, etc.) on the anaerobic digestion of food waste. The results indicated that these heterologous substances inhibit the digestion efficiency by regulating the microbial community structures (i.e., Methanosaeta, Methanobacterium kluyver and van niel), metabolic activities (i.e., cell membrane permeability, osmotic pressure, and activities of key enzymes), microbial metabolic functions, and expressions of functional genes (i.e., ACAS and mcrA). The appropriate pretreatment methods, such as physical pretreatments (i.e., thermal, ultrasonic, biochar adsorption, etc.), chemical pretreatments (i.e., acid, alkali, advanced oxidation process, etc.) and biological pretreatments (i.e., domestication and enrichment of functional bacteria, etc.), were effective to ameliorate such inhibitory effects. Besides, the future prospects were given from the perspectives of the combined effects of various heterologous substances on the digestion systems, as well as the necessity of source classification and reaction process optimization for enhanced digestion performance. This work would provide theoretical guidance for improving the anaerobic digestion of food waste.
-
[1] ZHANG C S, SU H J, BAEYENS J, et al. Reviewing the anaerobic digestion of food waste for biogas production[J]. Renewable and Sustainable Energy Reviews, 2014, 38:383-392. [2] LETTINGA G, REBAC S, ZEEMAN G. Challenge of psychrophilic anaerobic wastewater treatment[J]. TRENDS in Biotechnology, 2001, 19(9):363-370. [3] QIU Y J, FREAR C, CHEN S L, et al. Accumulation of long-chain fatty acids from Nannochloropsis salina enhanced by breaking microalgae cell wall under alkaline digestion[J]. Renewable energy, 2020, 149:691-700. [4] 孔天岐, 李润东, 张万里. 不同有机负荷、接种率及初始pH下的餐厨垃圾序批式厌氧消化特性研究[C]//2021年全国有机固废处理与资源化利用高峰论坛, 成都, 2021. [5] 张静静. 微塑料对废水厌氧消化产甲烷过程的影响研究[D].无锡:江南大学, 2021. [6] NI B J, ZENG S, WEI W, et al. Impact of roxithromycin on waste activated sludge anaerobic digestion:methane production, carbon transformation and antibiotic resistance genes[J]. Science of the Total Environment, 2020, 703:134899. [7] RASHID U, ANWAR F. Production of biodiesel through base-catalyzed transesterification of safflower oil using an optimized protocol[J]. Energy & Fuels, 2008, 22(2):1306-1312. [8] DU M T, LIU X R, WANG D B, et al. Understanding the fate and impact of capsaicin in anaerobic co-digestion of food waste and waste activated sludge[J]. Water Research, 2021, 188:116539. [9] LUO J Y, ZHANG Q, ZHAO J, et al. Potential influences of exogenous pollutants occurred in waste activated sludge on anaerobic digestion:a review[J]. Journal of Hazardous Materials, 2020, 383:121176. [10] MA J Y, WANG P L, GU W C, et al. Does lipid stress affect performance, fate of antibiotic resistance genes and microbial dynamics during anaerobic digestion of food waste?[J]. Science of the Total Environment, 2021, 756:143846. [11] 王暾. 油脂和盐分对餐厨垃圾单级厌氧消化影响的试验研究[D].重庆:重庆大学, 2008. [12] 万红, 黄高杰, 刘虎成. 油脂对污泥和餐厨垃圾厌氧消化的影响[J]. 工业安全与环保, 2018, 44(5):95-98. [13] 赵建伟. 盐度和油脂对餐厨垃圾和剩余污泥厌氧发酵产短链脂肪酸的影响与机理[D].长沙:湖南大学, 2018. [14] 刘研萍, 王玮, 陈雪, 等. 盐分对餐厨垃圾厌氧消化的影响[J]. 中国沼气, 2016, 34(2):53-57. [15] 徐家英, 王楠楠. 餐厨垃圾厌氧消化过程中盐度对产气量的毒性抑制研究[J]. 中国资源综合利用, 2020, 38(9):5-7. [16] ZHAO J W, LIU Y W, WANG D B, et al. Potential impact of salinity on methane production from food waste anaerobic digestion[J]. Waste Management, 2017, 67:308-314. [17] LI Y, LI X N, WANG P L, et al. Size-dependent effects of polystyrene microplastics on anaerobic digestion performance of food waste:focusing on oxidative stress, microbial community, key metabolic functions[J]. Journal of Hazardous Materials, 2022:129493. [18] LEE K, PARK K, KHANAL S, et al. Effects of household detergent on anaerobic fermentation of kitchen wastewater from food waste disposer[J]. Journal of Hazardous Materials, 2013, 244:39-45. [19] 李希. 洗洁精对餐厨垃圾厌氧消化影响的试验研究[D].合肥:安徽农业大学, 2017. [20] TAO Z, CHEN C, YANG Q, et al. Understanding the impact of allicin for organic matter release and microorganism community in anaerobic co-digestion of food waste and waste activated sludge[J]. Science of the Total Environment, 2021, 776:145598. [21] TAO Z, WANG D B, YAO F B, et al. The effects of thiosulfinates on methane production from anaerobic co-digestion of waste activated sludge and food waste and mitigate method[J]. Journal of Hazardous Materials, 2020, 384:121363. [22] TAO Z, YANG Q, YAO F B, et al. The inhibitory effect of thiosulfinate on volatile fatty acid and hydrogen production from anaerobic co-fermentation of food waste and waste activated sludge[J]. Bioresource Technology, 2020, 297:122428. [23] 王盼亮. 厨余垃圾厌氧消化过程中塑化剂和抗生素的影响及控制研究[D].上海:华东师范大学, 2022. [24] SHENG K C, CHEN X, PAN J M, et al. Effect of ammonia and nitrate on biogas production from food waste via anaerobic digestion[J]. Biosystems Engineering, 2013, 116(2):205-212. [25] RINZEMA A, BOONE M, van KNIPPENBERG K, et al. Bactericidal effect of long chain fatty acids in anaerobic digestion[J]. Water Environment Research, 1994, 66(1):40-49. [26] ALVES M, VIEIRA J M, PEREIRA R A, et al. Effect of lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part Ⅰ:biofilm growth and activity[J]. Water Research, 2001, 35(1):255-263. [27] HWU C S, TSENG S K, YUAN C Y, et al. Biosorption of long-chain fatty acids in UASB treatment process[J]. Water Research, 1998, 32(5):1571-1579. [28] 杨紫怡, 王雯, 马宗虎, 等. 长链脂肪酸对餐厨垃圾厌氧消化产甲烷的影响[J]. 环境工程学报, 2017, 11(10):5651-5657. [29] KOSTER I. Abatement of long-chain fatty acid inhibition of methanogenesis by calcium addition[J]. Biological Wastes, 1987, 22(4):295-301. [30] VALLADÃO A, TORRES A, FREIRE D, et al. Profiles of fatty acids and triacylglycerols and their influence on the anaerobic biodegradability of effluents from poultry slaughterhouse[J]. Bioresource Technology, 2011, 102(14):7043-7050. [31] 李荣平, 葛亚军, 王奎升, 等. 餐厨垃圾特性及其厌氧消化性能研究[J]. 可再生能源, 2010, 28(1):76-80. [32] SU G Q, WANG S Y, YUAN Z G, et al. Enhanced volatile fatty acids production of waste activated sludge under salinity conditions:performance and mechanisms[J]. Journal of Bioscience and Bioengineering, 2016, 121(3):293-298. [33] 都明婷. 辣椒素在餐厨垃圾和剩余污泥共消化中的迁移转化与影响行为的解析与调控[D].长沙:湖南大学, 2021. [34] OH D G, JANG Y K, WOO J E, et al. Metabolomics reveals the effect of garlic on antioxidant-and protease-activities during Cheonggukjang (fermented soybean paste) fermentation[J]. Food Research International, 2016, 82:86-94. [35] WANG D B, DUAN Y Y, YANG Q, et al. Free ammonia enhances dark fermentative hydrogen production from waste activated sludge[J]. Water Research, 2018, 133:272-281. [36] ZHANG M, ZHANG Y, LI Z W, et al. Anaerobic co-digestion of food waste/excess sludge:substrates-products transformation and role of NADH as an indicator[J]. Journal of Environmental Management, 2019, 232:197-206. [37] MAUERHOFER L M, REISCHL B, SCHMIDER T, et al. Physiology and methane productivity of Methanobacterium thermaggregans[J]. Applied Microbiology and Biotechnology, 2018, 102(17):7643-7656. [38] CHEN Y G, LIU K, SU Y L, et al. Continuous bioproduction of short-chain fatty acids from sludge enhanced by the combined use of surfactant and alkaline pH[J]. Bioresource Technology, 2013, 140:97-102. [39] ZHOU A J, LIU W Z, VARRONE C, et al. Evaluation of surfactants on waste activated sludge fermentation by pyrosequencing analysis[J]. Bioresource Technology, 2015, 192:835-840. [40] 田源, 蒋家超, 商晓甫, 等. 生物表面活性剂烷基多苷对餐厨垃圾厌氧发酵产挥发性酸的影响[J]. 环境工程学报, 2016, 10(11):6680-6684. [41] 牛俊玲, 秦莉, 郑宾国. 鼠李糖脂对餐厨垃圾厌氧发酵过程中水解酶活性的影响[J]. 农业环境科学学报, 2015, 34(8):1589-1594. [42] WEI W, HUANG Q S, SUN J, et al. Polyvinyl chloride microplastics affect methane production from the anaerobic digestion of waste activated sludge through leaching toxic bisphenol-A[J]. Environmental Science & Technology, 2019, 53(5):2509-2517. [43] WEI W, HUANG Q S, SUN J, et al. Revealing the mechanisms of polyethylene microplastics affecting anaerobic digestion of waste activated sludge[J]. Environmental Science & Technology, 2019, 53(16):9604-9613. [44] 周祺, 刘研萍, 邹德勋, 等. 餐厨垃圾与玉米秸秆联合厌氧消化产甲烷性能的试验研究[J]. 中国沼气, 2014, 32(1):27-31,48. [45] DING L K, CHENG J, QIAO D, et al. Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production[J]. Bioresource Technology, 2017, 241:491-499. [46] 王金辉. 餐厨垃圾固相物料干式厌氧消化处理研究[D].宁波:宁波大学, 2017. [47] 孟伟, 查金, 张思梦, 等. 餐厨垃圾厌氧消化过程氨氮抑制及缓解办法综述[J]. 环境工程, 2019, 37(12):177-182. [48] KAYHANIAN M. Ammonia inhibition in high-solids biogasification:an overview and practical solutions[J]. Environmental Technology, 1999, 20(4):355-365. [49] YANG Z Y, WANG W, HE Y F, et al. Effect of ammonia on methane production, methanogenesis pathway, microbial community and reactor performance under mesophilic and thermophilic conditions[J]. Renewable Energy, 2018, 125:915-925. [50] SHI X C, LIN J, ZUO J N, et al. Effects of free ammonia on volatile fatty acid accumulation and process performance in the anaerobic digestion of two typical bio-wastes[J]. Journal of Environmental Sciences, 2017, 55:49-57. [51] AKINDELE A A, SARTAJ M. The toxicity effects of ammonia on anaerobic digestion of organic fraction of municipal solid waste[J]. Waste Management, 2018, 71:757-766. [52] 王佳宁, 徐永平, 李晓宇, 等. 畜禽粪便抗生素残留及其对环境的影响[J]. 畜牧与兽医, 2017(10):140-144. [53] WANG P L, LI X N, CHU S Q, et al. Metatranscriptomic insight into the effects of antibiotic exposure on performance during anaerobic co-digestion of food waste and sludge[J]. Journal of Hazardous Materials, 2022, 423:127163. [54] 陶子乐滔. 大蒜素对餐厨垃圾联合剩余污泥厌氧共消化体系的影响机理与调控技术[D].长沙:湖南大学, 2020. [55] UTHIRAKRISHNAN U, SHARMILA V G, MERRYLIN J, et al. Current advances and future outlook on pretreatment techniques to enhance biosolids disintegration and anaerobic digestion:a critical review[J]. Chemosphere, 2022, 288:132553. [56] 王佳明, 蒋建国, 宫常修, 等. 超声波预处理对餐厨垃圾产VFAs的影响[J]. 中国环境科学, 2014, 34(5):1207-1211. [57] 岳良辰. 餐厨废油断键降解脱毒促进微生物定向转化产甲烷研究[D].杭州:浙江大学, 2021. [58] KONDUSAMY D, KALAMDHAD A S. Pre-treatment and anaerobic digestion of food waste for high rate methane production:a review[J]. Journal of Environmental Chemical Engineering, 2014, 2(3):1821-1830. [59] 朱萌熙. 蟹壳基生物炭吸附和活化过硫酸盐去除四环素的机理研究[D].长沙:湖南大学, 2021. [60] 董钦. 沼渣生物炭缓解餐厨垃圾厌氧消化系统氨胁迫的效应及机理研究[D].重庆:重庆大学, 2021. [61] 胡崇亮, 张栋, 戴翎翎, 等. 厌氧消化过程氨抑制研究进展[J]. 环境工程, 2016, 34(12):23-27,63. [62] HALE S E, ALLING V, MARTINSEN V, et al. The sorption and desorption of phosphate-P, ammonium-N and nitrate-N in cacao shell and corn cob biochars[J]. Chemosphere, 2013, 91(11):1612-1619. [63] 罗景阳, 邵钱祺, 王凤, 等. 碳基材料对有机废弃物厌氧消化的影响及作用机制研究进展[J]. 同济大学学报(自然科学版), 2021, 49(12):1701-1709. [64] WANG G J, LI Q, GAO X, et al. Synergetic promotion of syntrophic methane production from anaerobic digestion of complex organic wastes by biochar:performance and associated mechanisms[J]. Bioresource Technology, 2018, 250:812-820. [65] ZHAO W X, YANG H Z, HE S F, et al. A review of biochar in anaerobic digestion to improve biogas production:Performances, mechanisms and economic assessments[J]. Bioresource Technology, 2021, 341:125797. [66] 卢丽英. 生物炭对土壤中四环素类抗生素的有效性和形态转化的影响[D].南京:南京农业大学, 2015. [67] YANG J N, WANG J W, WANG F, et al. Insights into the effect of Carbamazepine on the anaerobic fermentation of waste activated sludge:performance, mechanisms and regulation[J]. Chemical Engineering Journal, 2022,452:139549. [68] CHEN H Y, LIU G G, WANG K, et al. Characteristics of microbial community in EGSB system treating with oxytetracycline production wastewater[J]. Journal of Environmental Management, 2021, 295:113055. [69] ZHENG F, AN X L, ZHOU G W, et al. Mite gut microbiome and resistome exhibited species-specific and dose-dependent effect in response to oxytetracycline exposure[J]. Science of the Total Environment, 2022, 807:150802. [70] 骆雪. 餐厨垃圾厌氧消化耐氨产甲烷菌的培养与提纯研究[D].南京:东南大学, 2021. [71] 贺静, 陈泾涛, 李强, 等. 菌种驯化对废弃食用油脂中温厌氧消化的影响[J]. 中国沼气, 2015, 33(4):26-30. [72] 张静. 餐厨垃圾厌氧消化产甲烷因素优化以及相应微生物群落结构解析[D].武汉:武汉大学, 2017. [73] 李林桐. 微量金属元素强化餐厨垃圾厌氧消化及其微生物群落解析[D].沈阳:沈阳航空航天大学, 2020. [74] 黄建钦. 油脂和预处理对餐厨垃圾厌氧消化产气特性的影响研究[D].杭州:浙江大学, 2020.
点击查看大图
计量
- 文章访问数: 122
- HTML全文浏览量: 19
- PDF下载量: 8
- 被引次数: 0