RESEARCH PROGRESS OF METAL-ORGANIC FRAMEWORKS MEMBRANES FOR HIGH SALINITY WATER TREATMENT
-
摘要: 高含盐废水处理难度大,膜处理法由于成本低、占地面积小和工艺操作方便而备受关注。有机金属框架纳米材料(MOFs)因其纳米孔道可调控、比表面积高,高分子兼容性好,在高盐废水处理中具有潜在优势。介绍了MOFs混合基质膜与薄膜纳米复合膜的优势、分离原理。随后,基于膜材料的合成与设计思路,分析了MOFs膜材料的基本制备策略,并且综述了MOFs膜材料在工业高盐废水处理和海水淡化领域的应用进展。提出了MOFs膜材料在高含盐水处理中遇到的瓶颈问题以及用于处理高盐废水的MOFs膜材料的研究方向。分析表明:膜污染和结垢机理与预防策略的深入探究、MOFs在膜中的分散性问题、膜成本控制以及工业化生产等均为该领域亟须突破的问题,研发稳定、经济、环境友好型的MOFs膜材料将成为MOFs膜处理高盐废水领域新的研究重点。Abstract: High salinity wastewater is difficult to treat. The membrane method is widely paid attention to due to its low cost, small footprint, and convenient process operation. Metal-organic framework nanomaterials (MOFs) have tunable nanochannels, high specific surface area, and good compatibility with polymers, so MOFs membrane has a good potential in treating high-salinity wastewater. In this review, the advantages and separation principles of MOFs mixed matrix membranes and thin-film nanocomposite membranes are briefly described. Then, based on the synthesis and design ideas of MOFs membranes, the basic preparation strategies of MOFs membrane materials are analyzed. Finally, the research progress of MOFs membrane materials in treating high-salinity industrial wastewater and seawater desalination is illustrated. The bottleneck problems encountered by MOFs membrane materials in the treatment of high-salt water are also summarized, and the development directions of MOFs membranes for high-salinity wastewater treatment are prospected. The analysis shows that the in-depth exploration of membrane fouling and scaling mechanism and prevention strategy, the disperse problem of MOFs in membranes, the control of membrane cost, and scale-up production need to be carried out urgently. With the increasingly stringent emission standards, the development of stable, economic, and eco-friendly MOFs membranes is the development direction for high-salt wastewater treatment.
-
[1] 黄乐, 徐颖峰, 谢茜青, 等. 新型三维多孔光热材料制备及其高盐废水处理应用[J]. 环境科学, 2020, 41(4):1716-1724. [2] 国家环保总局. 污水综合排放标准:GB 8978-1996[S]. 1996. [3] 田亮, 张研, 崔伟超, 等. 高盐废水净化处理的研究[J]. 盐科学与化工, 2022, 51(2):12-15. [4] 李兴, 勾芒芒, 刘学峰, 等. 高盐废水处理现状及研究进展[J]. 水处理技术, 2019, 45(5):6-10,4. [5] 郭世伟,郑力玮,罗建泉,等. 纳滤膜在高盐废水处理中的应用研究进展[J]. 膜科学与技术, 2022, 42(2):175-182. [6] LEE J Y, TANG C Y, HUO F. Fabrication of porous matrix membrane (PMM) using metal-organic framework as green template for water treatment[J]. Scientific Reparts, 2014, 4:3740. [7] PANAGOPOULOS A, HARALAMBOUS K J, LOIZIDOU M. Desalination brine disposal methods and treatment technologies:a review[J]. Science of the Total Environment, 2019, 693:133545. [8] LIAO Z P, ZHU J Y, LI X, et al. Regulating composition and structure of nanofillers in thin film nanocomposite (TFN) membranes for enhanced separation performance:a critical review[J]. Separation and Purification Technology, 2021, 266:118567. [9] 王玥,徐卫星,杨乘宇. 薄膜纳米复合材料膜的研究进展和应用[J]. 山东化工, 2022, 51(2):76-82. [10] 朱晓,朱军勇,张亚涛.金属有机骨架/聚酰胺薄层纳米复合膜的研究进展[J].化工进展,2022,41(8):4314-4326. [11] YU S J, PANG H W, HUANG S Y, et al. Recent advances in metal-organic framework membranes for water treatment:a review[J]. Science of the Total Environment, 2021, 800(12):149662. [12] ZHANG W H, YIN M J, ZHAO Q, et al. Graphene oxide membranes with stable porous structure for ultrafast water transport[J]. Nat Nanotechnol, 2021, 16(3):337-343. [13] KITAGAWA S. Metal-organic frameworks (MOFs)[J]. Chemical Society Reviews, 2014, 43(16):5415-5418. [14] LE T, CHEN X, DONG H, et al. An evolving insight into metal organic framework-functionalized membranes for water and wastewater treatment and resource recovery[J]. Industrial & Engineering Chemistry Research, 2021, 60(19):6869-6907. [15] QIU S L, XUE M, ZHU G S. Metal-organic framework membranes:from synthesis to separation application[J]. Chem Soc Rev, 2014, 43(16):6116-6140. [16] FURUKAWA H, CORDOVA K E, O'KEEFFE M, et al. The chemistry and applications of metal-organic frameworks[J]. Science, 2013, 341(6149):1230444. [17] ATTIA M S, YOUSSEF A O, ABOU-OMAR M N, et al. Emerging advances and current applications of nanoMOF-based membranes for water treatment[J]. Chemosphere, 2022, 292:133369. [18] LI J, WANG H, YUAN X Z, et al. Metal-organic framework membranes for wastewater treatment and water regeneration[J]. Coordination Chemistry Reviews, 2020, 404:213116. [19] 赵东升.金属有机骨架混合基质水处理分离膜研究进展[J].化工进展,2021,40(2):1035-1047. [20] KURNIAWAN A, ISMADJI S, SOETAREDJO F E, et al. Metal-organic framework-based processes for water desalination:Current development and future prospects[M]. Aquananotechnology, 2021:491-532. [21] WANG X R, ZHAI L Z, WANG Y X, et al. Improving water-treatment performance of zirconium metal-organic framework membranes by postsynthetic defect healing[J]. ACS Appl Mater Interfaces, 2017, 9(43):37848-37855. [22] LIU X L, DEMIR N K, WU Z T, et al. Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination[J]. J Am Chem Soc, 2015, 137(22):6999-7002. [23] DAI R B, WANG X Y, TANG C Y, et al. Dually charged MOF-based thin-film nanocomposite nanofiltration membrane for enhanced removal of charged pharmaceutically active compounds[J]. Environ Sci Technol, 2020, 54(12):7619-7628. [24] PAUZI M Z M, YAHAYA N Z S, RAHMAN M A. Metal organic framework (MOF) membrane for water purification[M]. 2020. [25] SARAVANAKUMAR K, DE SILVA S F, SANTOSH S S, et al. Impact of industrial effluents on the environment and human health and their remediation using MOFs-based hybrid membrane filtration techniques[J]. Chemosphere, 2022(Pt 1):135593. [26] ZHAO D L, FENG F, SHEN L, et al. Engineering metal-organic frameworks (MOFs) based thin-film nanocomposite (TFN) membranes for molecular separation[J]. Chemical Engineering Journal, 2023, 454:140447. [27] SARMA D, RAMANUJACHARY K, LOFLAND S, et al. Amino acid based MOFs:synthesis, structure, single crystal to single crystal transformation, magnetic and related studies in a family of cobalt and nickel aminoisophthales[J]. Inorganic Chemistry, 2009, 48(24):11660-11676. [28] LIANG W N, LI L, HOU J W, et al. Linking defects, hierarchical porosity generation and desalination performance in metal-organic frameworks[J]. Chem Sci, 2018, 9(14):3508-3516. [29] DAI R B, GUO H, TANG C Y, et al. Hydrophilic selective nanochannels created by metal organic frameworks in nanofiltration membranes enhance rejection of hydrophobic endocrine-disrupting compounds[J]. Environ Sci Technol, 2019, 53(23):13776-13783. [30] NAMBI KRISHNAN J, VENKATACHALAM K R, GHOSH O, et al. Review of thin film nanocomposite membranes and their applications in desalination[J]. Front Chem, 2022, 10:781372. [31] ZIREHPOUR A, RAHIMPOUR A, ULBRICHT M. Nano-sized metal organic framework to improve the structural properties and desalination performance of thin film composite forward osmosis membrane[J]. Journal of Membrane Science, 2017, 531:59-67. [32] YANG Z, SUN P F, LI X H, et al. A critical review on thin-film nanocomposite membranes with interlayered structure:mechanisms, recent developments, and environmental applications[J]. Environ Sci Technol, 2020, 54(24):15563-15583. [33] WANG Y, LI X Y, ZHAO S F, et al. Thin-film composite membrane with interlayer decorated metal-organic framework uio-66 toward enhanced forward osmosis performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(1):195-206. [34] 李莹, 张红星, 闫柯乐, 等. MOFs膜的制备方法及其应用研究[J]. 现代化工, 2016, 36(12):28-32. [35] YANG L B, WANG Z, ZHANG J L. Zeolite imidazolate framework hybrid nanofiltration (NF) membranes with enhanced permselectivity for dye removal[J]. Journal of Membrane Science, 2017, 532:76-86. [36] AHMADIAN-ALAM L, MAHDAVI H, DAVIJANI S M M. Influence of structurally and morphologically different nanofillers on the performance of polysulfone membranes modified by the assembled PDDA/PAMPS-based hybrid multilayer thin film[J]. J Environ Manage, 2021, 300:113809. [37] LI Q, LI J S, FANG X F, et al. Interfacial growth of metal-organic framework membranes on porous polymers via phase transformation[J]. Chem Commun (Camb), 2018, 54(29):3590-3593. [38] ZIMMERMANN R. Book review:condensation polymers:by interfacial and solution methods. By P. W. Morgan[J]. Angewandte Chemie-international Edition-Angew Chem Int ed, 1966, 5:749-750. [39] SORRIBAS S, GORGOJO P, TELLEZ C, et al. High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration[J]. J Am Chem Soc, 2013, 135(40):15201-15208. [40] LIU T Y, YUAN H G, LIU Y Y, et al. Metal-organic framework nanocomposite thin films with interfacial bindings and self-standing robustness for high water flux and enhanced ion selectivity[J]. ACS Nano, 2018, 12(9):9253-9265. [41] LI H T, FU M, WANG S Q, et al. Stable Zr-based metal-organic framework nanoporous membrane for efficient desalination of hypersaline water[J]. Environmental Science & Technology, 2021, 55(21):14917-14927. [42] XIAO F, HU X Y, CHEN Y B, et al. Porous Zr-based metal-organic frameworks (Zr-MOFs)-incorporated thin-film nanocomposite membrane toward enhanced desalination performance[J]. Acs Applied Materials & Interfaces, 2019, 11(50):47390-47403. [43] 周贵忠,殷琳淼.高盐度有机废水处理技术进展[J].青岛科技大学学报(自然科学版),2018,39(增刊1):6-9. [44] LIN J Y, YE W Y, BALTARU M C, et al. Tight ultrafiltration membranes for enhanced separation of dyes and Na2SO4 during textile wastewater treatment[J]. Journal of Membrane Science, 2016, 514:217-228. [45] LIN S S, ZHAO H Y, ZHU L P, et al. Seawater desalination technology and engineering in China:a review[J]. Desalination, 2021, 498:114728. [46] SUWANDI B L, WIDJAJA L N, CATHERINE S, et al. Current progress in metal-organic frameworks-embedded membranes for water desalination[J]. Desalination and Water Treatment, 2021, 213:214-228. [47] WEN Y, DAI R B,LI X S, et al. Metal-organic framework enables ultraselective polyamide membrane for desalination and water reuse[J]. Science Advances, 2022,8(10):m4419. [48] WANG X L, LYU Q, TONG T Z, et al. Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport[J]. Nature Communications, 2022, 13(1):266. [49] ZHU Y B, GUPTA K M, LIU Q, et al. Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes[J]. Desalination, 2016, 385:75-82. [50] GU Z Y, YU S L, ZHU J Y, et al. Incorporation of lysine-modified UiO-66 for the construction of thin-film nanocomposite nanofiltration membrane with enhanced water flux and salt selectivity[J]. Desalination, 2020, 493:114661. [51] ZHU J Y, HOU J W, YUAN S S, et al. MOF-positioned polyamide membranes with a fishnet-like structure for elevated nanofiltration performance[J]. Journal of Materials Chemistry A, 2019, 7(27):16313-16322. [52] LIU G L, ZHANG X M, YUAN Y D, et al. Thin-film nanocomposite membranes containing water-stable zirconium metal-organic cages for desalination[J]. ACS Materials Letters, 2021, 3(3):268-274. [53] SHUKLA A K, ALAM J, ALHOSHAN M S, et al. Thin-film nanocomposite membrane incorporated with porous Zn-based metal-organic frameworks:toward enhancement of desalination performance and chlorine resistance[J]. ACS Applied Materials & Interfaces, 2021, 13(24):28818-28831. [54] MEHRA S, POLISETTI V, DAMARLA K, et al. Ionic liquid-based colloidal formulations for the synthesis of nano-MOFs:applications in gas adsorption and water desalination[J]. ACS Applied Materials & Interfaces, 2021, 13(34):41249-41261. [55] 李柄缘,刘光全,王莹,等.高盐废水的形成及其处理技术进展[J].化工进展,2014,33(2):493-497,515. [56] FENG X Q, PENG D L, ZHU J Y, et al. Recent advances of loose nanofiltration membranes for dye/salt separation[J]. Separation and Purification Technology, 2022, 285:120228. [57] ZHANG X. Selective separation membranes for fractionating organics and salts for industrial wastewater treatment:Design strategies and process assessment[J]. Journal of Membrane Science, 2022, 643:120052. [58] GNANASEKARAN G, SUDHAKARAN M S P, KULMATOVA D, et al. Efficient removal of anionic, cationic textile dyes and salt mixture using a novel CS/MIL-100(Fe) based nanofiltration membrane[J]. Chemosphere, 2021, 284:131244. [59] RUAN H M, GUO C M, YU H W, et al. Fabrication of a MIL-53(Al) nanocomposite membrane and potential application in desalination of dye solutions[J]. Industrial & Engineering Chemistry Research, 2016, 55(46):12099-12110. [60] AGHILI F, GHOREYSHI A A, BRUGGEN B V D, et al. Introducing gel-based UiO-66-NH2 into polyamide matrix for preparation of new super hydrophilic membrane with superior performance in dyeing wastewater treatment[J]. Journal of Environmental Chemical Engineering, 2021, 9(4):105484. [61] PENG Y G, HUANG H L, ZHANG Y X, et al. A versatile MOF-based trap for heavy metal ion capture and dispersion[J]. Nature Communications, 2018, 9(1):187. [62] ZHANG T H, LI P Y, DING S P, et al. High-performance TFNC membrane with adsorption assisted for removal of Pb(Ⅱ) and other contaminants[J]. J Hazard Mater, 2022, 424(Pt D):127742. [63] HE M L, WANG L T, LV Y, et al. Novel polydopamine/metal organic framework thin film nanocomposite forward osmosis membrane for salt rejection and heavy metal removal[J]. Chemical Engineering Journal, 2020, 389:124452. [64] LI T, ZHANG W M, ZHAI S, et al. Efficient removal of nickel(Ⅱ) from high salinity wastewater by a novel PAA/ZIF-8/PVDF hybrid ultrafiltration membrane[J]. Water Res, 2018, 143:87-98. [65] JAMSHIDIFARD S, KOUSHKBAGHI S, HOSSEINI S, et al. Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(Ⅱ), Cd(Ⅱ) and Cr(Ⅵ) ions from aqueous solutions[J]. J Hazard Mater, 2019, 368:10-20. [66] HE Y R, TANG Y P, MA D C, et al. UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal[J]. Journal of Membrane Science, 2017, 541:262-270. [67] SAMANTARAY P K, BALODA S, MADRAS G, et al. A designer membrane tool-box with a mixed metal organic framework and RAFT-synthesized antibacterial polymer perform in tandem towards desalination, antifouling and heavy metal exclusion[J]. Journal of Materials Chemistry A, 2018, 6(34):16664-16679. [68] YANG L B, WANG Z, ZHANG J L. Highly permeable zeolite imidazolate framework composite membranes fabricated via a chelation-assisted interfacial reaction[J]. Journal of Materials Chemistry A, 2017, 5(29):15342-15355. [69] 张旭珂. 基于二维杂化材料制备及用于染料/盐分离的高性能复合膜研究[D]. 郑州:郑州大学, 2019. [70] CHENG P, HUANG Y D, WU C, et al. Two-dimensional metal-porphyrin framework membranes for efficient molecular sieving[J]. Journal of Membrane Science, 2021, 640:119812. [71] ZHAO Q P, ZHAO D L, CHUNG T S. Thin-film nanocomposite membranes incorporated with defective ZIF-8 nanoparticles for brackish water and seawater desalination[J]. Journal of Membrane Science, 2021, 625:119158. [72] MA D C, PEH S B, HAN G, et al. Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal-organic framework (MOF) UiO-66:toward enhancement of water flux and salt rejection[J]. ACS Appl Mater Interfaces, 2017, 9(8):7523-7534. [73] HAN G, CHUNG T S, TORIIDA M, et al. Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination[J]. Journal of Membrane Science, 2012, 423:543-555. [74] WANG F F, ZHENG T, WANG P P, et al. Enhanced water permeability and antifouling property of coffee-ring-textured polyamide membranes by in situ incorporation of a zwitterionic metal-organic framework[J]. Environmental Science & Technology, 2021, 55(8):5324-5334. [75] SUTARIYA B, KARAN S. A realistic approach for determining the pore size distribution of nanofiltration membranes[J]. Separation and Purification Technology, 2022, 293:121096. [76] ZHU J Y, QIN L T, ULIANA A, et al. Elevated performance of thin film nanocomposite membranes enabled by modified hydrophilic MOFs for nanofiltration[J]. ACS Appl Mater Interfaces, 2017, 9(2):1975-1986.
点击查看大图
计量
- 文章访问数: 109
- HTML全文浏览量: 13
- PDF下载量: 5
- 被引次数: 0