CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同处理模式下污泥厌氧消化的能源回收与碳排放分析

夏雪 邵钱祺 曹悦 黄文轩 冯骞 操家顺 罗景阳

夏雪, 邵钱祺, 曹悦, 黄文轩, 冯骞, 操家顺, 罗景阳. 不同处理模式下污泥厌氧消化的能源回收与碳排放分析[J]. 环境工程, 2023, 41(7): 1-7,13. doi: 10.13205/j.hjgc.202307001
引用本文: 夏雪, 邵钱祺, 曹悦, 黄文轩, 冯骞, 操家顺, 罗景阳. 不同处理模式下污泥厌氧消化的能源回收与碳排放分析[J]. 环境工程, 2023, 41(7): 1-7,13. doi: 10.13205/j.hjgc.202307001
XIA Xue, SHAO Qianqi, CAO Yue, HUANG Wenxuan, FENG Qian, CAO Jiashun, LUO Jingyang. ANALYSIS OF ENERGY RECOVERY AND CARBON EMISSION DURING SLUDGE ANAEROBIC DIGESTION UNDER DIFFERENT TREATMENT ROUTES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 1-7,13. doi: 10.13205/j.hjgc.202307001
Citation: XIA Xue, SHAO Qianqi, CAO Yue, HUANG Wenxuan, FENG Qian, CAO Jiashun, LUO Jingyang. ANALYSIS OF ENERGY RECOVERY AND CARBON EMISSION DURING SLUDGE ANAEROBIC DIGESTION UNDER DIFFERENT TREATMENT ROUTES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 1-7,13. doi: 10.13205/j.hjgc.202307001

不同处理模式下污泥厌氧消化的能源回收与碳排放分析

doi: 10.13205/j.hjgc.202307001
基金项目: 

国家自然科学基金(52070069);环境污染控制与废弃物资源化利用安徽省重点实验室开放课题(2021EPC01)

详细信息
    作者简介:

    夏雪(2000-),女,硕士研究生,主要研究方向为污水生物处理以及碳减排。221605020010@hhu.edu.cn

    通讯作者:

    罗景阳(1989-),男,工学博士,教授,博士生导师,主要研究方向为有毒有害污染物控制理论与技术及有机废物的资源化利用。luojy2016@hhu.edu.cn

ANALYSIS OF ENERGY RECOVERY AND CARBON EMISSION DURING SLUDGE ANAEROBIC DIGESTION UNDER DIFFERENT TREATMENT ROUTES

  • 摘要: 厌氧消化是污泥资源化的主要方式之一,然而不同处理模式下污泥的能源回收和碳排放情况存在差异。根据联合国政府间气候变化专门委员会(IPCC)提供的核算准则,从碳减排的角度比较了4条污泥厌氧消化技术路线的能源回收与碳排放强度。结果表明:污泥传统厌氧消化(R1)、污泥热水解(90℃/170℃)-厌氧消化(R2)、污泥与餐厨垃圾共消化(R3)和污泥热水解(170℃)-餐厨垃圾共消化(R4)4种不同情境下的甲烷产量顺序为R1 < R290℃ < R2170℃ < R3 < R4,净碳排放量顺序为R3 < R290℃ < R1 < R4 < R2170℃。各技术路线通过能源回收,均实现了碳中和率>100%,净碳排放量为负碳排放。针对碳排放特征进一步分析发现,R2170℃相较于R290℃甲烷产量增加15.4%,但是热量消耗也增加110%,间接碳排放增加74.3%,导致净碳排放量增加60.5%;R4相较于R3甲烷产量增加6.3%,但热量消耗增加110%,间接碳排放增加95.9%,导致净碳排放量增加61.9%。R3相较于R2170℃的甲烷产量增加40.9%,同时热量消耗减少52.7%,碳排放量减少413%,说明在同等处理条件下,污泥与餐厨垃圾共消化较热水解预处理模式在能源回收和碳减排等方面均更具优势。因此,在考虑不同技术途径实现污泥资源化和碳减排时,应兼顾厌氧消化甲烷的增量与其可能导致的能源消耗增加之间的平衡。
  • [1] WU K, DOU X, ZHANG X, et al.The sodium-ion battery:an energy-storage technology for a carbon-neutral world[J/OL].Engineering, 2023,21(2).DOI: 10.1016/j.eng.2022.04.011.
    [2] WU J N, LI X, JIN R.The response of the industrial system to the interrelationship approaching to carbon neutrality of carbon sources and sinks from carbon metabolism:coal chemical case study[J].Energy, 2022, 261:125172.
    [3] HUANG B, XING K, NESS D, et al.Rethinking carbon-neutral built environment:urban dynamics and scenario analysis[J].Energy and Buildings, 2022, 255:111672.
    [4] 戴晓虎,张辰,章林伟,等.碳中和背景下污泥处理处置与资源化发展方向思考[J].给水排水, 2021, 47(3):1-5.
    [5] 宋新新,刘杰,林甲,等.碳中和时代下我国能量自给型污水处理厂发展方向及工程实践[J].环境科学学报, 2022, 42(4):53-63.
    [6] ZHANG C, YANG X, TAN X J, et al.Sewage sludge treatment technology under the requirement of carbon neutrality:recent progress and perspectives[J].Bioresource Technology, 2022, 362:127853.
    [7] 戴晓虎,侯立安,章林伟,等.我国城镇污泥安全处置与资源化研究[J].中国工程科学, 2022, 24(5):145-153.
    [8] DI COSTANZO N, CESARO A, DI CAPUA F, et al.Exploiting the nutrient potential of anaerobically digested sewage sludge:a review[J].Energies, 2021, 14(23):8149.
    [9] MUNASINGHE-ARACHCHIGE S P, NIRMALAKHANDAN N.Nitrogen-fertilizer recovery from the centrate of anaerobically digested sludge[J].Environmental Science & Technology Letters, 2020, 7(7):450-459.
    [10] WU B R, LI H W, ZHOU K, et al.Three birds with one stone:N/P recovery, dewaterability improvement, and facilitating liquid digestate treatment of anaerobically digested sludge[J].ACS Sustainable Chemistry & Engineering, 2022, 10(37):12402-12410.
    [11] 戴晓虎.我国污泥处理处置现状及发展趋势[J].科学, 2020, 72(6):30-34

    ,4.
    [12] 李慧莉,杨子显,陈志强,等.基质负荷对秸秆与污泥厌氧消化微生物群落结构的影响[J].哈尔滨工业大学学报, 2020, 52(11):18-25.
    [13] 陈珺,杨琦.污泥高级厌氧消化的应用现状与发展趋势[J].中国给水排水, 2016, 32(6):19-23.
    [14] CHOI J M, HAN S K, LEE C Y.Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment[J].Bioresource Technology, 2018, 259:207-213.
    [15] SHI Y, XU J P.A multi-objective approach to kitchen waste and excess sludge co-digestion for biomethane production with anaerobic digestion[J].Energy, 2023, 262:125243.
    [16] 林文聪,赵刚,刘伟,等.污水厂污泥典型处理处置工艺碳排放核算研究[J].环境工程, 2017, 35(7):175-179.
    [17] 郝晓地,王向阳,曹达啟,等.污水有机物中化石碳排放CO2辨析[J].中国给水排水, 2018, 34(2):13-17.
    [18] IPCC, 2006 IPCC Guidelines for National Greenhouse Gas Inventories[EB/OL].https://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html, 2006-04-26.
    [19] 陈菊香,张疆.厌氧消化/热电联产用于污水厂污泥处理改造[J].中国给水排水, 2012, 28(22):102-104.
    [20] 李哲坤,张立秋,杜子文,等.城市污泥不同处理处置工艺路线碳排放比较[J].环境科学,2023,44(2):1181-1190.
    [21] 王琳,李德彬,刘子为,等.污泥处理处置路径碳排放分析[J].中国环境科学, 2022, 42(5):2404-2412.
    [22] 国家市场监督管理总局,国家标准化管理委员会.综合能耗计算通则:GB/T 2589-2020[S].
    [23] IPCC.2019 refinement to the 2006 IPCC guidelines for national greenhouse gas inventory[R].
    [24] 中国特种设备检测研究院,国家质量监督检验检疫总局,北京特种设备行业协会,等.锅炉节能技术监督管理规程[Z].2010:17P.;A4.
    [25] IPCC.2006 IPCC Guidelines for National Greenhouse Gas Inventories (Volume 5):waste[EB/OL].2006.http://www.ipccnggip.iges.or.jp/public/2006gl/vol5.html.2015-08-16.
    [26] 郝晓地,周鹏,曹达啓.餐厨垃圾处置方式及其碳排放分析[J].环境工程学报, 2017, 11(2):673-682.
    [27] 宋晓雅.污泥热水解厌氧消化与常规厌氧消化的运行比较[J].给水排水, 2019, 55(3):26-30.
    [28] 张琦东.热水解对污泥厌氧消化可降解性的影响及其机理探究[J].工业安全与环保, 2018, 44(2):57-60.
    [29] 次瀚林,王先恺,董滨.不同污泥干化焚烧技术路线全链条碳足迹分析[J].净水技术, 2021, 40(6):77-82

    ,99.
    [30] 杭世珺,关春雨.污泥厌氧消化工艺运行阶段的碳减排量分析[J].给水排水, 2013, 49(4):44-50.
    [31] 王昱琛,宿程远,丁凤秀,等.厌氧共消化低碳处理餐厨垃圾与剩余污泥的现状与展望[J].广西师范大学学报(自然科学版),2022,40(5):406-417.
    [32] 丁月玲,张焕焕,董滨,等.有机生活垃圾与脱水污泥协同厌氧消化工艺的性能[J].净水技术, 2017, 36(2):40-44

    ,50.
    [33] ZHOU P, MESHREF M N A, DHAR B R.Optimization of thermal hydrolysis process for enhancing anaerobic digestion in a wastewater treatment plant with existing primary sludge fermentation[J].Bioresource Technology, 2021, 321:124498.
    [34] LU D, SUN F Q, ZHOU Y.Insights into anaerobic transformation of key dissolved organic matters produced by thermal hydrolysis sludge pretreatment[J].Bioresource Technology, 2018, 266:60-67.
    [35] LI H, JIN C, ZHANG Z Y, et al.Environmental and economic life cycle assessment of energy recovery from sewage sludge through different anaerobic digestion pathways[J].Energy, 2017, 126:649-657.
    [36] ZHANG L, ZHANG Y T, ZHANG Q, et al.Sludge gas production capabilities under various operational conditions of the sludge thermal hydrolysis pretreatment process[J].Journal of the Energy Institute, 2014, 87(2):121-126.
    [37] LI Y, TANG Y P, XIONG P, et al.High-efficiency methanogenesis via kitchen wastes served as ethanol source to establish direct interspecies electron transfer during anaerobic Co-digestion with waste activated sludge[J].Water Research, 2020, 176:115763.
    [38] ISMAIL A, KAKAR F L, ELBESHBISHY E, et al.Combined thermal hydrolysis pretreatment and anaerobic co-digestion of waste activated sludge and food waste[J].Renewable Energy, 2022, 195:528-539.
    [39] CAO X Q, YUAN H Y, TIAN Y Q.Anaerobic co-digestion of sewage sludge pretreated by thermal hydrolysis and food waste:gas production, dewatering performance, and community structure[J].Environ Technol, 2022,16:1-12.
    [40] 郝晓地,唐兴,曹达啓.剩余污泥厌氧共消化技术研究现状及应用趋势[J].环境工程学报, 2016, 10(12):6809-6818.
  • 加载中
计量
  • 文章访问数:  349
  • HTML全文浏览量:  38
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-16

目录

    /

    返回文章
    返回