CARBON EMISSION ACCOUNTING AND REDUCTION ANALYSIS OF WASTE COLLABORATIVE DISPOSAL IN TYPICAL CEMENT KILNS
-
摘要: 水泥行业是我国实现碳中和的关键行业之一。为了揭示水泥窑协同处置废弃物节能减排的效果,基于全生命周期理论,分别对水泥窑协同处置危废、生活垃圾、一般固废的碳排放与常规水泥生产进行对比,并对水泥行业碳减排路径进行分析。结果表明:碳酸盐和煤炭消耗组成的煅烧是主要的温室气体排放源,占52.37%~62.84%。各工艺类型水泥生产排放的CO2量顺序为常规水泥生产>水泥窑协同处置生活垃圾>水泥窑协同处置一般固废>水泥窑协同处置危废,分别为883.65,772.67,656.30,609.79 kg/t,说明协同处置废弃物在减少CO2排放量上具有一定的优势。此外,政策管控、能源结构调整、原(燃)料替代及提高能效技术、余热发电技术和CCUS技术也是实现水泥行业碳中和目标的主要措施和手段。该成果可为水泥行业开展节能减排工作提供参考。Abstract: The cement industry is one of the key industries in China for achieving the goal of carbon neutrality. To reveal the effect of energy saving and emission reduction of cement kiln collaborative disposal waste, this study compared the carbon emissions of cement kiln collaborative disposal of hazardous waste, cement kiln collaborative disposal of domestic waste, cement kiln collaborative disposal of general solid waste, and conventional cement production, based on the whole life cycle theory, and analyzed the carbon emission reduction path of cement industry. The results showed that calcination composed of carbonate and coal consumption was the main source of greenhouse gas emissions, accounting for about 52.37%~62.84%. The amount of CO2 emitted by cement production was in the order of conventional cement production > cement kiln collaborative disposal of domestic waste > cement kiln coordinated disposal of general solid waste > cement kiln coordinated disposal of hazardous waste, which were 883.65 kg/t, 772.67 kg/t, 656.30 kg/t and 609.79 kg/t, respectively, indicating that collaborative disposal of waste had certain advantages in reducing CO2 emissions. Policy control, adjustment of energy structure, the substitution of raw (combustion), energy efficiency improvement technology, waste heat power generation technology and CCUS technology were the main measures to achieve the goal of carbon neutrality in the cement industry. This study could provide basic support for the cement industry to carry out energy conservation and emission reduction.
-
Key words:
- cement /
- coordinated disposal /
- carbon emissions accounting /
- carbon reduction
-
[1] 佚名.习近平在第七十五届联合国大会一般性辩论上发表重要讲话[N].人民日报,2020-09-23. [2] U S Geological Survey M C S H.Cement[R/OL].2021.https://www.usgs.gov/centers/national-minerals-information-center/cement-statistics-and-information. [3] 中国水泥网[EB/OL].https://data.ccement.com/finance/Market/Yield?ti=1648608096996. [4] 张琦峰, 方恺, 徐明, 等.基于投入产出分析的碳足迹研究进展[J].自然资源学报, 2018,33(4):696-708. [5] 宋晓玲, 梁智霖, 罗维, 等.全工业固废原料制备水泥工艺的生命周期评价研究[J].环境科学学报, 2021,41(12):5190-5199. [6] VALDERRAMA C, GRANADOS R, CORTINA J L, et al.Implementation of best available techniques in cement manufacturing:a life-cycle assessment study[J].Journal of Cleaner Production, 2012,25:60-67. [7] 耿涌, 董会娟, 郗凤明, 等.应对气候变化的碳足迹研究综述[J].中国人口·资源与环境, 2010,20(10):6-12. [8] 曹植, 沈镭, 刘立涛, 等.基于自下而上方法的中国水泥生产碳排放强度演变趋势分析[J].资源科学, 2017,39(12):2344-2357. [9] DAN S A, JIN Y A, BCA B, et al.Life-cycle environmental impact analysis of a typical cement production chain[J].Applied Energy, 2016, 164:916-923. [10] 姜睿, 王洪涛.中国水泥工业的生命周期评价[J].化学工程与装备, 2010(4):183-187. [11] WEI C, HONG J, XU C.Pollutants generated by cement production in China, their impacts, and the potential for environmental improvement[J].Journal of Cleaner Production, 2014, 103:61-69. [12] CHAN C C S, THORPE D, ISLAM M.An evaluation carbon footprint in fly ash based geopolymer cement and ordinary Portland cement manufacture, 2015[C]//IEEE, 2015.254-259. [13] SHEN W, CAO L, LI Q, et al.Is magnesia cement low carbon? Life cycle carbon footprint comparing with Portland cement[J].Journal of Cleaner Production, 2016, 131(10):20-27. [14] 葛亚男.水泥窑协同处置危险废物的生命周期评价研究[D].太原:太原理工大学,2021. [15] YAO L, YU L, GONG X, et al.Environmental impact analysis of blast furnace slag applied to ordinary portland cement production[J].Journal of Cleaner Production, 2015, 120:221-230. [16] 北京国寰环境技术有限责任公司.北京金隅北水环保环保科技有限公司飞灰处置及资源化利用城市运行保障项目环境影响报告书[R].2019. [17] 云南省建筑材料科学研究设计院有限公司.云南水泥窑协同处置生活垃圾项目环境影响评价报告书[R].2020. [18] 吉林市雨环环保科技有限公司.冀东水泥磐石有限责任公司日产4500吨水泥熟料生产线建设项目环境影响报告书(报批版)[R].2021. [19] HU D, GUO Z, WANG Z, et al.Metabolism analysis and eco-environmental impact assessment of two typical cement production systems in Chinese enterprises[J].Ecological Informatics, 2015,26:70-77. [20] 广西南宁师源环保科技有限公司.广西桂民投珍珠水泥有限公司日产5500吨新型干法水泥熟料生产线项目环境影响报告书(征求意见稿)[R].2021. [21] SONG D, YANG J, CHEN B, et al.Life-cycle environmental impact analysis of a typical cement production chain[J].Applied energy, 2016,164:916-923. [22] STEPHEN P H, NICOLE D B, et al.Life-cycle assessment of using liquid hazardous waste as an alternative energy source during Portland cement manufacturing:a united states case study[J].Journal of Cleaner Production,2018,195:1057-1068. [23] 侯星宇,张芸,戚昱,等.水泥窑协同处置工业废弃物的生命周期评价[J].环境科学学报,2015,35(12):4112-4119. [24] 贺晋瑜, 何捷, 王郁涛, 等.中国水泥行业二氧化碳排放达峰路径研究[J].环境科学研究, 2022, 35(2):10. [25] 张呈尧.水泥行业节能减排路径模拟方法及其应用研究[D].北京:北京理工大学, 2018. [26] KE J, ZHENG N, FRIDLEY D, et al.Potential energy savings and CO2 emissions reduction of China's cement industry[J].Energy Policy, 2012,45:739-751. [27] 朱淑瑛, 刘惠, 董金池, 等.中国水泥行业二氧化碳减排技术及成本研究[J].环境工程, 2021,39(10):15-22. [28] 陈元顺.浅析中国水泥行业发展[J].中国建材, 2021(9):122-124. [29] 何峰, 刘峥延, 邢有凯,等.中国水泥行业节能减排措施的协同控制效应评估研究[J].气候变化研究进展, 2021, 17(4):10. [30] 工业和信息化部, 中国人民共和国工业和信息化部.国家工业节能技术装备推荐目录(2020)[M].2020. [31] 工业和信息化部, 中国人民共和国工业和信息化部.国家工业节能技术装备推荐目录(2019)[M].2019. [32] 工业和信息化部, 中国人民共和国工业和信息化部.国家工业节能技术推荐目录(2021)(征求意见稿)[M].2021.108. [33] 工业和信息化部, 中国人民共和国工业和信息化部.国家工业节能技术应用指南与案例(2019)[M].2019. [34] 工业和信息化部, 中国人民共和国工业和信息化部.国家鼓励发展的重大环保技术装备目录(2020年版)[M].2020. [35] ZHANG C, YU B, CHEN J, et al.Green transition pathways for cement industry in China[J].Resources, Conservation and Recycling, 2021,166:105355. [36] NIDHEESH P V, KUMAR M S.An overview of environmental sustainability in cement and steel production[J].Journal of Cleaner Production, 2019,231:856-871. [37] 刘伟.环巢湖区域利用水泥窑协同处置城市废弃物分析[J].安徽农学通报, 2016,22(6):103-105. [38] WOJTACHA R K, KUCHARSKI P, SMOLINSKI A.Conventional and alternative sources of thermal energy in the production of cement:an impact on CO2 emission[J].Energies (Basel), 2021,14(6):1539. [39] XU J, YI B, FAN Y.A bottom-up optimization model for long-term CO2 emissions reduction pathway in the cement industry:a case study of China[J].International Journal of Greenhouse Gas Control, 2016,44:199-216. [40] 江旭昌.我国水泥工业当前应大力发展"替代燃料"产业[J].新世纪水泥导报, 2021,27(6):18-23. [41] KARELLAS S, LEONTARITIS A D, PANOUSIS G, et al.Energetic and exergetic analysis of waste heat recovery systems in the cement industry[J].Energy, 2013,58:147-156. [42] KHOSROABADI F, ASLANI A, BEKHRAD K, et al.Analysis of carbon dioxide capturing technologies and their technology developments[J].Cleaner Engineering and Technology, 2021(5):100279. [43] MADEJSKI P, CHMIEL K, SUBRAMANIAN N, et al.Methods and techniques for CO2 capture:review of potential solutions and applications in modern energy technologies[J].Energies, 2022,15(3):887. [44] HORNBERGER M, SPÖRL R, SCHEFFKNECHT G.Calcium looping for CO2 capture in cement plants-pilot scale test[J].Energy Procedia, 2017,114:6171-6174. [45] STANGER R, WALL T, SPÖRL R, et al.Oxyfuel combustion for CO2 capture in power plants[J].International Journal of Greenhouse Gas Control, 2015,40:55-125.
点击查看大图
计量
- 文章访问数: 265
- HTML全文浏览量: 48
- PDF下载量: 22
- 被引次数: 0