ANALYSIS OF CARBON OFFSET AND ENERGY RECOVERY POTENTIAL OF DIFFERENT FOOD WASTE RESOURCE DISPOSAL METHODS
-
摘要: 我国厨余垃圾产量逐年上升,其资源化处理成为固废处理的重点。为探究当前主要使用的几种厨余垃圾资源化回收方式的碳排放与能源使用情况,采用IPCC与相关文献中推荐的核算方式对污水共处理、厌氧消化、焚烧与堆肥4种处理方式的碳补偿和能源回收情况进行评估。结果表明:4种处理方式的碳补偿潜力分别为-56.9,4-88.6,44.2,222.0 kg CO2/t FW。能源回收潜力分别为-116.0,-215.0,58.9,61.0 kW·h/t FW。而根据敏感性分析可知:除技术层面影响外,共处理和厌氧消化方式的稳定性较强,两者均为非常理想的资源化处理方式。焚烧方式由于涉及脱水过程,造成大量碳排放,且整体稳定性较差。堆肥方式无法实现碳补偿与能源回收,基于碳中和的视角应尽量减少该方式的使用。综上可得,厨余垃圾资源化处置方式的优先级顺序为厌氧消化、共处理、焚烧、堆肥。Abstract: With China's food waste production increasing yearly, recycling energy from food waste becomes a key issue in solid waste treatment. In order to explore the carbon emissions and energy usage of several main food waste recycling methods, this paper used the accounting methods recommended by IPCC and related literature to evaluate the carbon offset and energy recovery of four treatment methods, sewage co-treatment, anaerobic digestion, incineration and composting. The results showed that the carbon offset potential of the four treatment methods was -56.9, -88.6, 44.2, and 222.0 kg CO2/t FW, respectively. The energy recovery potential was -116.0, -215.0, 58.9, and 61.0 kW·h/t FW, respectively. According to the sensitivity analysis, the co-treatment and anaerobic digestion mode have strong stability in addition to the technical influence, indicating that co-treatment and anaerobic digestion are ideal resource treatment methods. The incineration method involves a large amount of carbon emissions due to the dehydration process, and the overall stability is poor. Composting can't achieve carbon emission reduction and energy recovery, so its application should be minimized. To sum up, the priority sequence of food waste recycling disposal was anaerobic digestion, sewage co-treatment, incineration and composting.
-
Key words:
- food waste /
- sewage treatment /
- energy recovery /
- carbon neutral
-
[1] 刘晓兰.干式厌氧发酵处理厨余垃圾的工况分析[J].节能与环保,2022(5):44-46. [2] 刘继伟, 江燕航, 艾克来木·艾合买提,等.厨余垃圾生物水解过程中氯化物的迁移转化[J].中国给水排水, 2021,37(23):52-56. [3] JIN C X, SUN S Q, YANG D H, et al.Anaerobic digestion:an alternative resource treatment option for food waste in China[J].Science of the Total Environment, 2021,779:146397. [4] 郝晓地, 周鹏, 曹达啓.餐厨垃圾处置方式及其碳排放分析[J].环境工程学报, 2017, 11(2):673-682. [5] ZAN F X, IQBAL A, LU X J, et al."Food waste-wastewater-energy/resource" nexus:integrating food waste management with wastewater treatment towards urban sustainability[J].Water Research, 2022, 211:118089. [6] 杨建新, 刘鹤.厨余垃圾粉碎机应用的环境影响研究现状与展望[J].环境工程学报, 2022, 16(9):2949-2957. [7] IQBAL A, ZAN F X, SIDDIQUI M A, et al.Integrated treatment of food waste with wastewater and sewage sludge:energy and carbon footprint analysis with economic implications[J].Science of the Total Environment, 2022,825:154052. [8] 郝晓地, 刘然彬, 胡沅胜.污水处理厂"碳中和"评价方法创建与案例分析[J].中国给水排水, 2014, 30(2):1-7. [9] IQBAL A, EKAMA G A, ZAN F, et al.Potential for co-disposal and treatment of food waste with sewage:a plant-wide steady-state model evaluation[J].Water Research, 2020, 184:116175. [10] 郝晓地, 陈奇, 李季,等.污泥干化焚烧乃污泥处理/处置终极方式[J].中国给水排水, 2019, 35(4):35-42. [11] 缪平, 张志华, 薛露肖,等.低温带式干化工艺用于自来水厂余泥处理中试效果试验[J].净水技术, 2022,41(增刊1):202-205,258. [12] YU Q Q, LI H,et al.Life cycle environmental performance of two restaurant food waste management strategies at Shenzhen, China.[J].Journal of Material Cycles and Waste Management, 2021, 23:826-839. [13] 王琳, 李德彬, 刘子为,等.泥处理处置路径碳排放分析[J].中国环境科学, 2022,42(5):2404-2412. [14] 李欢, 周颖君, 刘建国,等.我国厨余垃圾处理模式的综合比较和优化策略[J].环境工程学报, 2021,15(7):2398-2408. [15] 郝晓地, 王向阳, 曹达啟,等.污水有机物中化石碳排放CO2辨析[J].中国给水排水, 2018, 34(2):13-17. [16] 李哲坤,张立秋,杜子文,等.城市污泥不同处理处置工艺路线碳排放比较[J].环境科学,2023,44(2):1181-1190. [17] 周俊, 王梦瑶, 王改红, 等.餐厨垃圾资源化利用技术研究现状及展望[J].生物资源, 2020, 42(1):87-96. [18] IQBAL A, ZAN F X, LIU X M, et al.Integrated municipal solid waste management scheme of Hong Kong:a comprehensive analysis in terms of global warming potential and energy use[J].Journal of Cleaner Production, 2019, 225(10):1079-1088. [19] IPCC.2006 IPCC guidelines for national greenhouse gas inventories (Volume 5):waste[EB/OL].[2015-08-16].http://www.ipccnggip.iges.or.jp/public/2006gl/vol5.html. [20] STEMANN S W, RENSBURG P V, RISTOW N E, et al.Integrated chemical/physical and biological processes modeling Part 2-Anaerobic digestion of sewage sludges[J].Water Science & Technology, 2005, 54(5):109-117. [21] 刘荣杰, 邓舟, 梁卫坤,等.深圳市政污水厂对家庭厨余垃圾粉碎直排的耐受分析[J].环境卫生工程, 2018, 26(4):43-47. [22] 边潇, 宫徽, 阎中,等.餐厨垃圾不同"收集-处理"模式的碳排放估算对比[J].环境工程学报,2021,13(2):449-456. [23] CHEN H B, ZENG L, WANG D B, et al.Recent advances in nitrous oxide production and mitigation in wastewater treatment[J].Water Research, 2020, 184:116168. [24] YU Q Q, LI H, DENG Z, et al.Comparative assessment on two full-scale food waste treatment plants with different anaerobic digestion processes[J].Journal of Cleaner Production, 2020, 263:121625. [25] SHARMA B K, CHANDEL M K.A life cycle assessment to compare composting schemes for the treatment of municipal solid waste in mumbai, india[C]//Sardinia 2017/Sixteenth International Waste Management and Landfill Symposium.2017. [26] LI Y Y, JIN Y Y, LI J H, et al.Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste[J].Applied Energy, 2016, 172:47-58.
点击查看大图
计量
- 文章访问数: 213
- HTML全文浏览量: 42
- PDF下载量: 14
- 被引次数: 0