PREDICTION OF CARBON DIOXIDE EMISSION IN GANSU PROVINCE BASED ON BP NEURAL NETWORK AND ITS INFLUENCING FACTORS
-
摘要: 基于排放因子法估算2000—2020年甘肃省三大产业及生活能源消费直接CO2排放量,描述分析其时序演变特征。建立BP神经网络模型并预测2021—2030年甘肃省CO2排放量。构建甘肃省CO2排放影响因素的STIRPAT拓展模型,利用多元回归分析定量探究了各因素对CO2排放量的影响程度和内在作用机理,并结合随机森林进一步识别重要影响因素。结果表明:甘肃省产业及生活能源消耗直接CO2排放总体呈波动增长趋势,且第二产业占比在70%以上,是主要的CO2排放源;BP神经网络模型的预测误差为2×10-4,相关系数>0.99,对于预测甘肃省CO2排放具有较高精度,并得出2026年的甘肃省能源消耗直接CO2排放量达到最大;甘肃省CO2排放的驱动因素作用差异显著,CO2排放强度、经济发展、城乡消费对CO2排放的正向作用较大,城镇居民人均消费支出是主要影响因素。森林覆盖率的增长抑制了CO2排放,能源强度的降低有助于CO2排放量减少,3大产业结构的调整与转型可引起CO2排放量下降。Abstract: The estimation of direct CO2 emissions from three major industries and domestic energy consumption in Gansu province from 2000 to 2020 by emission factor method was carried out, to describe and analyze its evolution characteristics. Then we established a BP neural network model and forecasted the CO2 emissions of Gansu province from 2021 to 2030. Finally, a STIRPAT expansion model of influencing factors of CO2 emission in Gansu province was constructed, the influence degree and internal mechanism of each factor on CO2 emissions were quantitatively explored by using multiple regression analysis, and the important influencing factors were further identified by combining random forests. The results showed that:the direct CO2 emission from industrial and domestic energy consumption in Gansu province were generally fluctuating, and the secondary industry accounted for more than 70% of the total CO2 emissions, which was the main source of carbon dioxide emissions. The prediction error of the BP neural network model was 2×10-4, and the correlation coefficient was greater than 0.99, which had high accuracy for predicting CO2 emissions in Gansu province, also it was concluded that the direct CO2 emissions of energy consumption in Gansu province would reach the maximum value in 2026. The driving factors of CO2 emissions in Gansu province were significantly different, the intensity of CO2 emissions, economic development and urban and rural consumption had a greater positive effect on CO2 emissions, and per capita consumption expenditure of urban residents was the main influencing factor. The growth of forest coverage inhibited CO2 emissions, and the reduction of energy intensity contributed to the reduction of CO2 emissions. The adjustment and transformation of the three major industrial structures could lead to a decline in CO2 emissions. The research provided a theoretical basis and scientific basis for Gansu province to promote low-carbon emission reduction.
-
Key words:
- CO2 emissions /
- BP neural network /
- STIRPAT model /
- multiple regression analysis /
- random forest
-
[1] 方恺,李帅,叶瑞克,等.全球气候治理新进展:区域碳排放权分配研究综述[J].生态学报,2020,40(1):10-23. [2] ZHANG L, LEI J, ZHOU X, et al.Changes in carbon dioxide emissions and LMDI-based impact factor decomposition:the Xinjiang Uygur autonomous region as a case[J].Journal of Arid Land,2014,6(2):145-155. [3] 李欢,杨珊,陈建宏,等.湖南省能源消费碳排放驱动因素及趋势预测实证分析[J].环境工程,2018,36(2):152-157. [4] PATA U K.Renewable and non-renewable energy consumption, economic complexity, CO2 emissions, and ecological footprint in the USA:testing the EKC hypothesis with a structural break[J].Environmental Science and Pollution Research,2021,28(1):846-861. [5] 顾张锋,徐丽华,马淇蔚,等.浙江省都市区碳排放时空演变及其影响因素[J].自然资源学报,2022,37(6):1524-1539. [6] 张君宇,宋猛,刘伯恩.中国二氧化碳排放现状与减排建议[J].中国国土资源经济,2022,35(4):38-44. [7] MENG B, WANG J G, ANDREW R, et al.Spatial spillover effects in determining China's regional CO2 emissions growth:2007-2010[J].Energy Economics,2017,63(3):161-173. [8] 田成诗,陈雨.中国省际农业碳排放测算及低碳化水平评价:基于衍生指标与TOPSIS法的运用[J].自然资源学报,2021,36(2):395-410. [9] 燕振刚,李薇,YAN T H,等.BP神经网络算法在河西绿洲玉米生产碳排放评估中的应用及算法有效性研究[J].中国生态农业学报,2018,26(8):1100-1106. [10] 彭猛,吴剑,陈柳芮,等.基于生产函数理论的重庆市碳排放预测[J].江苏大学学报(自然科学版),2021,42(4):451-457. [11] 张帆,徐宁,吴锋.共享社会经济路径下中国2020-2100年碳排放预测研究[J].生态学报,2021,41(24):9691-9704. [12] 潘栋,李楠,李锋,等.基于能源碳排放预测的中国东部地区达峰策略制定[J].环境科学学报,2021,41(3):1142-1152. [13] 张哲,任怡萌,董会娟.城市碳排放达峰和低碳发展研究:以上海市为例[J].环境工程,2020,38(11):12-18. [14] 李艳红.山东省碳减排系统仿真及政策优化研究[J].环境工程技术学报,2020,10(1):150-159. [15] LEI W, ZHANG J, SONG Q Q.A scenario analysis of Chinese carbon neutral based on STIRPAT and system dynamics model[J].Environmental Science and Pollution Research International,2022,29(36):55105-55130. [16] 胡振,龚薛,刘华.基于BP模型的西部城市家庭消费碳排放预测研究:以西安市为例[J].干旱区资源与环境,2020,34(7):82-89. [17] LEI W, LU B, ZHANG E N.System dynamic modeling and scenario simulation on Beijing industrial carbon emissions[J].Environmental Engineering Research,2016,21(4):355-364. [18] 刘丽娜,王春妤,袁子薇,等.区域农业碳排放LMDI分解和脱钩效应分析[J].统计与决策,2019,35(23):95-99. [19] 王雅楠,谢艳琦,谢丽琴,等.基于LMDI模型和Q型聚类的中国城镇生活碳排放因素分解分析[J].环境科学研究,2019,32(4):539-546. [20] LIU Y X, JIANG Y J, LIU H, et al.Driving factors of carbon emissions in China's municipalities:a LMDI approach[J].Environmental Science and Pollution Research International,2021,29(15).21789-21802. [21] 戴小文,何艳秋,钟秋波.中国农业能源消耗碳排放变化驱动因素及其贡献研究:基于Kaya恒等扩展与LMDI指数分解方法[J].中国生态农业学报,2015,23(11):1445-1454. [22] 陈占明,吴施美,马文博,等.中国地级以上城市二氧化碳排放的影响因素分析:基于扩展的STIRPAT模型[J].中国人口·资源与环境,2018,28(10):45-54. [23] 卢娜,曲福田,冯淑怡,等.基于STIRPAT模型的能源消费碳足迹变化及影响因素:以江苏省苏锡常地区为例[J].自然资源学报,2011,26(5):814-824. [24] XIONG C H, CHEN S, XU L T.Driving factors analysis of agricultural carbon emissions based on extended STIRPAT model of Jiangsu Province, China[J].Growth and Change,2020,51(3):1401-1416. [25] 曾晓莹,邱荣祖,林丹婷,等.中国交通碳排放及影响因素时空异质性[J].中国环境科学,2020,40(10):4304-4313. [26] 董莹,许宝荣,华中,等.基于LMDI的甘肃省碳排放影响因素分解研究[J].兰州大学学报(自然科学版),2020,56(5):606-614. [27] 李小军,朱青祥,漆志强,等.基于STIRPAT模型的碳排放峰值预测研究:以甘肃省为例[J].环保科技,2022,28(5):38-44. [28] 国家统计局能源统计司,国家能源局综合司.中国能源统计年鉴2008[M].北京:中国统计出版社,2008. [29] HOERL A E, KENNARD R W.Ridge regression:biased estimation for nonorthogonal problems[J].Technometrics, 1970, 12(1):55-67. [30] WANG S H,YU W Y.Sensitivity analysis of primary energy consumption structural change and carbon intensity[J].Resources Science,2013,35(7):1438-1446. [31] BREIMAN L.Random forests[J].Machine Learning, 2001, 45(1):5-32. [32] 刘卫东,唐志鹏,夏炎,等.中国碳强度关键影响因子的机器学习识别及其演进[J].地理学报,2019,74(12):2592-2603. [33] 周四军,江秋池.基于动态SDM的中国区域碳排放强度空间效应研究[J].湖南大学学报(社会科学版),2020,34(1):40-48.
点击查看大图
计量
- 文章访问数: 144
- HTML全文浏览量: 34
- PDF下载量: 5
- 被引次数: 0