中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁基纤维素微球的制备及其活化过硫酸盐降解盐酸四环素

刘瑞龙 任小花 国伟林

刘瑞龙, 任小花, 国伟林. 铁基纤维素微球的制备及其活化过硫酸盐降解盐酸四环素[J]. 环境工程, 2023, 41(7): 86-93,101. doi: 10.13205/j.hjgc.202307012
引用本文: 刘瑞龙, 任小花, 国伟林. 铁基纤维素微球的制备及其活化过硫酸盐降解盐酸四环素[J]. 环境工程, 2023, 41(7): 86-93,101. doi: 10.13205/j.hjgc.202307012
LIU Ruilong, REN Xiaohua, GUO Weilin. PREPARATION OF IRON-BASED CELLULOSE MICROSPHERES AND ITS ACTIVATION ON PERSULFATE TO DEGRADE TETRACYCLINE HYDROCHLORIDE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 86-93,101. doi: 10.13205/j.hjgc.202307012
Citation: LIU Ruilong, REN Xiaohua, GUO Weilin. PREPARATION OF IRON-BASED CELLULOSE MICROSPHERES AND ITS ACTIVATION ON PERSULFATE TO DEGRADE TETRACYCLINE HYDROCHLORIDE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 86-93,101. doi: 10.13205/j.hjgc.202307012

铁基纤维素微球的制备及其活化过硫酸盐降解盐酸四环素

doi: 10.13205/j.hjgc.202307012
基金项目: 

国家自然科学基金项目(51908242);济南大学科技计划项目(XKY1918)

详细信息
    作者简介:

    刘瑞龙(1997-),男,硕士研究生,主要研究方向为水污染处理工程。947576286@qq.com

    通讯作者:

    任小花(1986-),女,讲师,主要研究方向为水污染处理工程。stu_renxh@ujn.edu.cn

PREPARATION OF IRON-BASED CELLULOSE MICROSPHERES AND ITS ACTIVATION ON PERSULFATE TO DEGRADE TETRACYCLINE HYDROCHLORIDE

  • 摘要: 铁基催化剂具有优良的活化过硫酸盐的性能,且价廉易得,受到研究者的广泛关注,然而在现阶段研究铁基催化剂多为粉末材料,存在易团聚、回收困难等问题,制约其实际应用。以醋酸纤维素(CA)为载体,采用液滴微流控技术制备了一种具有较高催化活性的微球催化剂(CA-Fe微球)。采用扫描电镜-能谱仪(SEM-EDS)、傅里叶红外变换光谱仪(FTIR)和比表面积分析仪(BET)对催化剂的形貌、结构和组成进行分析。以CA-Fe微球为催化剂活化过二硫酸盐(PS)降解盐酸四环素(TCH)废水,考察初始TCH浓度、CA-Fe微球投加量和PS投加量等操作条件对TCH去除效果的影响。结果表明:CA-Fe微球对PS具有良好的活化性能,CA-Fe/PS体系能够有效去除TCH。在TCH初始浓度为20 mg/L、PS浓度为2 mmol/L、CA-Fe微球投加量为4 g/L条件下,TCH去除率在85%左右。自由基捕获(EPR)和自由基猝灭实验结果揭示,CA-Fe微球/PS体系中存在的活性自由基为·OH和SO4-·,且SO4-·在TCH降解中起主要作用。循环利用实验表明,CA-Fe微球具有良好的结构稳定性和循环利用性能,3次循环使用后TCH去除率仍保持在80%左右。研究结果可为铁基纤维素微球/PS催化体系在去除抗生素废水领域的应用提供科学依据。
  • [1] ZHANG J J, QIU S, FENG H P, et al.Efficient degradation of tetracycline using core-shell Fe@Fe2O3-CeO2 composite as novel heterogeneous electro-Fenton catalyst[J].Chemical Engineering Journal, 2022, 428:131403.
    [2] WEI Q Q, ZHOU K, CHEN J Y, et al.Insights into the molecular mechanism of tetracycline transport in saturated porous media affected by low-molecular-weight organic acids:role of the functional groups and molecular size[J].Science of the Total Environment, 2021, 799:149361.
    [3] SONG J L, HUANG M H, LIN X H, et al.Novel Fe-based metal-organic framework (MOF) modified carbon nanofiber as a highly selective and sensitive electrochemical sensor for tetracycline detection[J].Chemical Engineering Journal, 2022, 427:130913.
    [4] ALOTHMAN Z A, ALMASOUD N, MBIANDA X Y, et al.Synthesis and characterization of γ-cyclodextrin-graphene oxide nanocomposite:sorption, kinetics, thermodynamics and simulation studies of tetracycline and chlortetracycline antibiotics removal in water[J].Journal of Molecular Liquids, 2022, 345:116993.
    [5] DARVISHI CHESHMEH SOLTANI R, NADERI M, BOCZKAJ G, et al.Hybrid metal and non-metal activation of Oxone by magnetite nanostructures co-immobilized with nano-carbon black to degrade tetracycline:fenton and electrochemical enhancement with bio-assay[J].Separation and Purification Technology, 2021, 274:119055.
    [6] PIMENTEL J A I, DONG C D, GARCIA-SEGURA S, et al.Degradation of tetracycline antibiotics by Fe2+-catalyzed percarbonate oxidation[J].Science of The Total Environment, 2021, 781:146411.
    [7] GAO X, CHEN Y Q, KANG Z W, et al.Enhanced degradation of aqueous tetracycline hydrochloride by integrating eggshell-derived CaCO3/CuS nanocomposite with advanced oxidation process[J].Molecular Catalysis, 2021, 501:111380.
    [8] ZHANG J L, JIN X, YANG C H.Efficient removal of organic pollutants in waste sulfuric acid by an advanced oxidation process using coconut shell-derived biochar to produce qualified poly aluminium sulfate[J].Separation and Purification Technology, 2022, 293:121057.
    [9] PARK C M, HEO J, WANG D, et al.Heterogeneous activation of persulfate by reduced graphene oxide-elemental silver/magnetite nanohybrids for the oxidative degradation of pharmaceuticals and endocrine disrupting compounds in water[J].Applied Catalysis B, Environmental, 2018, 225:91-99.
    [10] MASUD M A A, KIM D G, SHIN W S.Highly efficient degradation of phenolic compounds by Fe(Ⅱ)-activated dual oxidant (persulfate/calcium peroxide) system[J].Chemosphere, 2022, 299:134392.
    [11] GAO Y, WANG Q, JI G Z, et al.Degradation of antibiotic pollutants by persulfate activated with various carbon materials[J].Chemical Engineering Journal, 2022, 429:132387.
    [12] ANUSHREE C, NANDA GOPALA KRISHNA D, PHILIP J.Efficient dye degradation via catalytic persulfate activation using iron oxide-manganese oxide core-shell particle doped with transition metal ions[J].Journal of Molecular Liquids, 2021, 337:116429.
    [13] TIAN K, HU L M, LI L T, et al.Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment[J].Chinese Chemical Letters, 2022, 33(10):4461-4477.
    [14] LIU Q Q, ZHANG L L, CHEN H X, et al.Sulfur and nitrogen co-doped three-dimensional graphene aerogels for high-performance supercapacitors:a head to head vertical bicyclic molecule both as pillaring agent and dopant[J].Applied Surface Science, 2021, 565:150453.
    [15] GE L, SHAO B B, LIANG Q H, et al.Layered double hydroxide based materials applied in persulfate based advanced oxidation processes:property, mechanism, application and perspectives[J].J Hazard Mater, 2022, 424:127612.
    [16] DING X Y, SONG X, CHEN X, et al.Degradation and mechanism of hexafluoropropylene oxide dimer acid by thermally activated persulfate in aqueous solutions[J].Chemosphere, 2021, 286:131720.
    [17] REN T L, MA X W, WU X Q, et al.Degradation of imidazolium ionic liquids in a thermally activated persulfate system[J].Chemical Engineering Journal, 2021, 412:128624.
    [18] ZHANG Y L, CHU W.Bisphenol S degradation via persulfate activation under UV-LED using mixed catalysts:synergistic effect of Cu-TiO2 and Zn-TiO2 for catalysis[J].Chemosphere, 2021, 286:131797.
    [19] CHEN T S, MA J S, ZHANG Q X, et al.Degradation of propranolol by UV-activated persulfate oxidation:reaction kinetics, mechanisms, reactive sites, transformation pathways and Gaussian calculation[J].The Science of the Total Environment, 2019, 690:878-890.
    [20] KAN H S, WANG T C, YU J X, et al.Remediation of organophosphorus pesticide polluted soil using persulfate oxidation activated by microwave[J].J Hazard Mater, 2021, 401:123361.
    [21] GARCIA-CERVILLA R, SANTOS A, ROMERO A, et al.Compatibility of nonionic and anionic surfactants with persulfate activated by alkali in the abatement of chlorinated organic compounds in aqueous phase[J].The Science of the Total Environment, 2021, 751:141782.
    [22] SHAN A, IDREES A, ZAMAN W Q, et al.Synthesis of nZVI-Ni@BC composite as a stable catalyst to activate persulfate:trichloroethylene degradation and insight mechanism[J].Journal of Environmental Chemical Engineering, 2021, 9(1):104808.
    [23] MIAO W, LIU Y, WANG D D, et al.The role of Fe-Nx single-atom catalytic sites in peroxymonosulfate activation:formation of surface-activated complex and non-radical pathways[J].Chemical Engineering Journal, 2021, 423:130250.
    [24] DUAN P T, PAN J W, DU W Y, et al.Activation of peroxymonosulfate via mediated electron transfer mechanism on single-atom Fe catalyst for effective organic pollutants removal[J].Applied Catalysis B:Environmental, 2021, 299:120714.
    [25] GAO Y, CONG S B, YU H Y, et al.Investigation on microwave absorbing properties of 3D C@ZnCo2O4 as a highly active heterogenous catalyst and the degradation of ciprofloxacin by activated persulfate process[J].Separation and Purification Technology, 2021, 262:118330.
    [26] RAO L J, YANG Y F, LIU X D, et al.Heterogeneous activation of persulfate by supporting ferric oxalate onto activated carbon fibers for organic contaminants removal[J].Materials Research Bulletin, 2020, 130:110919.
    [27] LI T, CHEN C, BROZENA A H, et al.Developing fibrillated cellulose as a sustainable technological material[J].Nature, 2021, 590(7844):47-56.
    [28] FAHIM A M, ABOUZEID R E, KIEY S A A, et al.Development of semiconductive foams based on cellulose- benzenesulfonate/CuFe2O4-nanoparticles and theoretical studies with DFT/B3PW91/LANDZ2 basis set[J].Journal of Molecular Structure, 2022, 1247:131390.
    [29] MIAO F, LIU Z H, KANG X C, et al.Electro-enhanced heterogeneous activation of peroxymonosulfate via acceleration of Fe(Ⅲ)/Fe(Ⅱ) redox cycle on Fe-B catalyst[J].Electrochimica Acta, 2021, 377:138073.
    [30] YANG Z, LUO M S, LIU Q L, et al.In situ XRD and raman investigation of the activation process over K-Cu-Fe/SiO2 catalyst for fischer-tropsch synthesis reaction[J].Catalysis Letters, 2020, 150(8):2437-2445.
    [31] SÁNCHEZ-VELANDIA J E, AGUDELO-CIFUENTES A, VILLA A L.Kinetics of the isomerization of α-pinene epoxide over Fe supported MCM-41 and SBA-15 materials[J].Reaction Kinetics, Mechanisms and Catalysis, 2019, 128(2):1005-1028.
    [32] JI Y F, FERRONATO C, SALVADOR A, et al.Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate:implications for remediation of groundwater contaminated by antibiotics[J].The Science of the Total Environment, 2014, 472:800-808.
    [33] WU J X, WANG B, BLANEY L, et al.Degradation of sulfamethazine by persulfate activated with organo-montmorillonite supported nano-zero valent iron[J].Chemical Engineering Journal, 2019, 361:99-108.
    [34] NIU L, ZHANG G M, XIAN G, et al.Tetracycline degradation by persulfate activated with magnetic γ-Fe2O3/CeO2 catalyst:performance, activation mechanism and degradation pathway[J].Separation and Purification Technology, 2021, 259:118156.
    [35] RUAN Y, KONG L J, ZHONG Y W, et al.Review on the synthesis and activity of iron-based catalyst in catalytic oxidation of refractory organic pollutants in wastewater[J].Journal of Cleaner Production, 2021, 321:128924.
    [36] ZHAO G Q, ZOU J C, CHEN X Q, et al.Iron-based catalysts for persulfate-based advanced oxidation process:microstructure, property and tailoring[J].Chemical Engineering Journal, 2021, 421:127845.
    [37] GUO Y X, YAN L G, LI X G, et al.Goethite/biochar-activated peroxymonosulfate enhances tetracycline degradation:inherent roles of radical and non-radical processes[J].Science Total Environment, 2021, 783:147102.
    [38] SU S S, CAO C J, ZHAO Y P, et al.Efficient transformation and elimination of roxarsone and its metabolites by a new α-FeOOH@GCA activating persulfate system under UV irradiation with subsequent As(Ⅴ) recovery[J].Applied Catalysis B:Environmental, 2019, 245:207-219.
    [39] WANG L, MA X L, HUANG G F, et al.Construction of ternary CuO/CuFe2O4/g-C3N4 composite and its enhanced photocatalytic degradation of tetracycline hydrochloride with persulfate under simulated sunlight[J].J Environ Sci (China), 2022, 112:59-70.
    [40] FENG Q Q, ZHOU J B, LUO W J, et al.Photo-Fenton removal of tetracycline hydrochloride using LaFeO3 as a persulfate activator under visible light[J].Ecotoxicology and Environmental Safety, 2020, 198:110661.
    [41] ZHANG Y F, WEI J, XING L Y, et al.Superoxide radical mediated persulfate activation by nitrogen doped bimetallic MOF (FeCo/N-MOF) for efficient tetracycline degradation[J].Separation and Purification Technology, 2022, 282:120124.
    [42] ELBENBERGER H, STEENKEN S, O'NEILL P, et al.Pulse radiolysis and electron spin resonance studies concerning the reaction of SO4.cntdot.- with alcohols and ethers in aqueous solution[J].Journal of Physical Chemistry, 1978, 82:749-750.
    [43] BUXTON G V, GREENSTOCK C L, HELMAN W P, et al.Critical review of rate constants for reactions of hydrated electrons chemical kinetic data base for combustion chemistry[J].Journal of Physical & Chemical Reference Data, 1988, 17:513-886.
    [44] ANIPSITAKIS P G, DIONYSIOU D D.Radical generation by the interaction of transition metals with common oxidants[J].Environmental Science & Technology, 2004, 38:3705-3712.
    [45] WANG R Y, YU Y J, ZHANG R J, et al.Vacancy-rich structure inducing efficient persulfate activation for tetracycline degradation over Ni-Fe layered double hydroxide nanosheets[J].Separation and Purification Technology, 2022, 289:120663.
    [46] DENG J, XIAO L W, YUAN S J, et al.Activation of peroxymonosulfate by CoFeNi layered double hydroxide/graphene oxide (LDH/GO) for the degradation of gatifloxacin[J].Separation and Purification Technology, 2021, 255:117685.
    [47] HOU L H, LI X M, YANG Q, et al.Heterogeneous activation of peroxymonosulfate using Mn-Fe layered double hydroxide:performance and mechanism for organic pollutant degradation[J].Science of the Total Environment, 2019, 663:453-464.
  • 加载中
计量
  • 文章访问数:  94
  • HTML全文浏览量:  20
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15

目录

    /

    返回文章
    返回