EFFECT OF INFLUENT COD CONCENTRATION ON MOTION VELOCITY OF MICROFAUNA IN ACTIVATED SLUDGE
-
摘要: 为探索污水中有机物浓度对活性污泥微型动物运动的影响,以常见运动方式(直线游泳型、曲线游泳型与综合运动型)的微型动物为研究对象,分析COD浓度对平均线速度($\bar V$)、平均角速度($\bar W$)和平均曲线速度($\bar V$CL)的影响。结果表明:随着COD浓度升高,曲线游泳型、运动速度较快的凹扁前口虫(Frontonia depressa)的平均角速度增加了87.7%,曲线游泳型、运动速度非常快的毛板壳虫(Coleps hirtus)平均角速度增加了49.1%,2种曲线游泳型微型动物的$\bar W$与COD浓度显著相关,(r分别为0.921、0.955),具有指示作用。COD浓度与直线游泳型、运动速度较快的三角袋鞭虫(Peranema trichophorum)的$\bar V$呈负相关(r=-0.723);与凹扁前口虫的$\bar V$呈正相关(r=0.877),具有较好的指示作用。COD浓度对运动速度较慢的葡萄异鞭虫(Anisonema acinus)、须足轮虫属(Euchlanis sp.)影响较小,对综合运动型、速度较快的锐利楯纤虫(Aspidisca lynceus)的曲线速度不产生显著影响。Abstract: In order to explore the effect of the concentration of organic matter on the microscopic animals' movement in activated sludge, the microfauna with ordinary movement modes (the linear swimming type, the curved swimming type and the comprehensive swimming type) were taken as the research object, and the effect of COD concentration on average linear velocity ($\bar V$), average angular velocity ($\bar W$) and average curve velocity ($\bar V$CL) of microfauna were analyzed. The results showed that with the increase of COD concentration, the average angular velocity of curve swimming and fast-moving Frontonia depressa increased by 87.7%. The average angular velocity of Coleps hirtus, which moves very fast, increased by 49.1%. Both average angular velocities of the two curved swimming types were significantly correlated with COD concentration (r=0.921, r=0.955) with a better indicating function. The COD concentration was negatively correlated with the linear velocity of Peranema trichophorum (r=-0.723); it was positively correlated with the linear velocity of Frontonia depressa (r=0.877). Both are with certain indicative function. COD concentration had little effect on Anisonema acinus and Euchlanis sp., but had no significant effect on the curve velocity of Aspidisca lynceus.
-
Key words:
- COD concentration /
- microfauna /
- linear velocity /
- angular velocity
-
[1] 郑雅楠, 王淑莹, 郭建华, 等.利用微型生物指示评价污水处理厂运行的研究进展[J].微生物学通报, 2008,35(12):1943-1949. [2] 丁国际, 张周翀, 何韵, 等.旋轮虫在污水生物处理中的作用机制初探[J].环境科学学报, 2019,39(10):3356-3363. [3] MIRJANA K, RENATA M K, BARBARA V, et al.The applicability of the sludge biotic index in a facility treating sugar refinery effluents and municipal wastewater[J].Water Environment Research, 2020,93(7):1087-1096. [4] 詹俊,李现瑾,韩云平,等.农村分散式污水处理设施潜在致病细菌分布特征[J].环境工程学报, 2021,15(12):3924-3933. [5] FOISSNER W.Protistsas bioindicators in activated sludge:identification, ecology and futureneeds[J].European Journal of Protistology, 2016,55(PtA):75-94. [6] MADONI P.Protozoa in wastewater treatment processes:a minireview[J].Italian Journal of Zoology, 2011,78(1):3-11. [7] 高晋华, 刘瑶, 李康宁, 等.汾河太原段轮虫多样性及群落结构的动态变化[J].水生态学杂志, 2021,42(6):77-84. [8] HU B, QI R, YANG M.Systematic analysis of microfauna indicator values for treatment performance in a full-scale municipal wastewater treatment plant[J].Journal of Environmental Sciences, 2013,25(7):1379-1385. [9] SCHANZ F R,SOMMER S,LAMI A, et al.Life-history responses of a freshwater rotifer to copper pollution[J].Ecology and Evolution, 2021,11(16):10947-10955. [10] PAN Y, ZHANG L B, LIN C G, et al.Influence of flow velocity on motor behavior of seacucumber Apostichopus japonicus[J].Physiology & Behavior, 2015, 144:52-59. [11] MADONI P.A sludge biotic index (SBI) for the evaluation of the biological performance of activated sludge plants based on the microfauna analysis[J].Water Research, 1994,28(1):67-75. [12] 陈晓飞.基于生物捕食的剩余活性污泥减量研究[D].武汉:武汉大学, 2009:80-83. [13] HU X B, WANG K, CHANG J, et al.Establishment of a comprehensive analysis method for the microfaunal movement in activated sludge[J].Environmental Science and Pollution Research, 2021,28(14):17084-17097. [14] MORGANA S, ESTÉVEZ-CALVAR N, GAMBARDELLA C, et al.A short-term swimming speed alteration test with nauplii of Artemia franciscana[J].Ecotoxicology and Environmental Safety, 2018,147:558-564. [15] 郭瑞昕, 王志良, 李国平, 等.有机磷农药乐果对萼花臂尾轮虫游泳行为的影响[J].环境科学与技术, 2013,36(7):44-48. [16] MADONI P.Protozoa in wastewater treatment processes:a minireview[J].Italian Journal of Zoology, 2011,78(1):3-11. [17] 张晓宁.原后生动物在生活污水处理中的指示作用[J].广东化工, 2010,37(11):119-120. [18] 李冬, 杨敬畏, 李悦, 等.缺氧/好氧交替连续流的生活污水好氧颗粒污泥运行及污染物去除机制[J].环境科学,2021,42(5):2385-2395. [19] 廖榆敏, 汤兵, 陈秋雯.移动床生物反应器启动特性研究进展[J].水处理技术, 2011,37(2):5-8. [20] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社, 2002. [21] 沈韫芬,章宋涉,龚循矩,等.微型生物监测新技术[M].北京:中国建筑工业出版社,1990. [22] 马放,杨基先,魏利.环境微生物图谱[M].北京:中国环境科学出版社, 2010. [23] LIU G X, INNES D, THOMPSON R J.Quantitative analysis of sperm plane circular movement in the blue mussels Mytilus edulis, M.trossulus and their hybrids[J].Journal of Experimental Zoology Part A:Ecological Genetics and Physiology, 2011,315(5):280-290. [24] 王硕, 于水利, 付强, 等.处理含油废水的好氧颗粒污泥形成过程及其特性研究[J].环境科学学报, 2015,35(6):1779-1785. [25] PARK H, ROSENTHAL A, JEZEK R, et al.Impact of inocula and growth mode on the molecular microbial ecology of anaerobic ammonia oxidation (anammox) bioreactor communities[J].Water Research, 2010,44(17):5005-5013. [26] BUONANNO F, ANESI A, GUELLA G, et al.Chemical offense by means of toxicysts in the freshwater ciliate, coleps hirtus[J].Journal of Eukaryotic Microbiology, 2014,61(3):293-304. [27] 房宽, 唐学玺, 张璟, 等.饵料微藻的种类和密度差异对褶皱臂尾轮虫幼虫摄食和选食行为的影响[J].海洋环境科学, 2013, 32(4):497-501. [28] YUFER A, PASCUAL E, OLIVARES J M.Factors affecting swimming speed in the rotifer brachionus plicatilis[J].Hydrobiologia, 2005,546(1):375-380.
点击查看大图
计量
- 文章访问数: 74
- HTML全文浏览量: 9
- PDF下载量: 6
- 被引次数: 0