中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于柠檬酸铁的Fe/C催化剂制备及其活化过二硫酸盐降解磺胺嘧啶的研究

杨佳妮 赵保卫 杨茂莺 索进苗 朱正钰 邓爱琴

杨德容, 叶芝祥, 杨怀金, 杨松. 成都市铺装道路扬尘排放清单及空间分布特征研究[J]. 环境工程, 2015, 33(11): 83-87. doi: 10.13205/j.hjgc.201511017
引用本文: 杨佳妮, 赵保卫, 杨茂莺, 索进苗, 朱正钰, 邓爱琴. 基于柠檬酸铁的Fe/C催化剂制备及其活化过二硫酸盐降解磺胺嘧啶的研究[J]. 环境工程, 2023, 41(7): 116-123,251. doi: 10.13205/j.hjgc.202307016
YANG Jiani, ZHAO Baowei, YANG Maoying, SUO Jinmiao, ZHU Zhengyu, DENG Aiqin. PREPARATION OF Fe/C CATALYST BASED ON FERRIC CITRATE AND ITS ACTIVATION PERFORMANCE ON PEROXYDISULFATE TO DEGRADE SULFADIAZINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 116-123,251. doi: 10.13205/j.hjgc.202307016
Citation: YANG Jiani, ZHAO Baowei, YANG Maoying, SUO Jinmiao, ZHU Zhengyu, DENG Aiqin. PREPARATION OF Fe/C CATALYST BASED ON FERRIC CITRATE AND ITS ACTIVATION PERFORMANCE ON PEROXYDISULFATE TO DEGRADE SULFADIAZINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 116-123,251. doi: 10.13205/j.hjgc.202307016

基于柠檬酸铁的Fe/C催化剂制备及其活化过二硫酸盐降解磺胺嘧啶的研究

doi: 10.13205/j.hjgc.202307016
基金项目: 

国家自然科学基金"微塑料与重金属的相互作用及其影响黄土中重金属植物有效性的机制"(22166022);兰州交通大学基础研究拔尖人才培养计划项目"微塑料影响土壤-蔬菜系统中抗生素抗性基因传播的机制(2022JC10)"

详细信息
    作者简介:

    杨佳妮(1998-),女,硕士研究生,主要研究方向为水处理高级氧化技术。1259747784@qq.com

    通讯作者:

    赵保卫(1968-),男,教授,主要研究方向为水污染控制技术。zhbw2001@sina.cn

PREPARATION OF Fe/C CATALYST BASED ON FERRIC CITRATE AND ITS ACTIVATION PERFORMANCE ON PEROXYDISULFATE TO DEGRADE SULFADIAZINE

  • 摘要: 针对Fe/C催化剂在催化过硫酸盐领域存在制备原料多、成本高、过程复杂等问题,以价廉环保的柠檬酸铁为原料,采用高温碳化法在不同热解温度(700,800,900,1000℃)下制备了4种Fe/C催化剂。通过SEM、EDS、BET、XRD、XPS对其进行表征,并将4种Fe/C催化剂用于吸附和活化过二硫酸盐(PDS)降解磺胺嘧啶(SDZ)。初步筛选后,以800℃下所得催化剂Fe/C-800作为目标催化剂进行深入研究,分析其活化PDS降解SDZ的性能及作用机理。结果表明:0.05 g/L的Fe/C-800在PDS投加量为1 mmol/L、溶液初始pH值为7时,SDZ (10 mg/L)的降解率可达98.8%;Fe/C-800具有较广的pH值适用范围,在低催化剂投加量下可高效降解不同浓度SDZ,且重复利用性能良好;Fe0和C可促进Fe3+转化为Fe2+,反应结束后铁/亚铁离子溶出量低(0.3182 mg/L);反应体系中自由基途径和非自由基途径均存在,其中SO4-·、O2-·和1O2占主导作用,共同作用于SDZ的降解过程。研究结果可为Fe/C非均相催化剂活化PDS降解有机污染物提供新思路。
  • [1] ZHU Y G, JOHNSON T A, SU J Q, et al.Diverse and abundant antibiotic resistance genes in Chinese swine farms[J].Proceedings of the National Academy of Sciences, 2013, 110(9):3435-3440.
    [2] 张晶晶, 陈娟, 王沛芳, 等.中国典型湖泊四大类抗生素污染特征[J].中国环境科学, 2021, 41(9):4271-4283.
    [3] KVEMMERER K.Antibiotics in the aquatic environment:a review[J].Chemosphere, 2009, 75(4):417-434.
    [4] DAUGHTON C G, RUHOY I S.Environmental footprint of pharmaceuticals:the significance of factors beyond direct excretion to sewers[J].Environmental Toxicology Chemistry, 2009, 28(12):2495-2521.
    [5] MICHAEL I, RIZZO L, MCARDELL C S, et al.Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment:a review[J].Water Research, 2013, 47(3):957-995.
    [6] XIAO S, CHENG M, ZHONG H, et al.Iron-mediated activation of persulfate and peroxymonosulfate in both homogeneous and heterogeneous ways:a review[J].Chemical Engineering Journal, 2020,384:123265.
    [7] MA D M, YANG Y, LIU B F, et al.Zero-valent iron and biochar composite with high specific surface area via K2FeO4 fabrication enhances sulfadiazine removal by persulfate activation[J].Chemical Engineering Journal, 2021, 408:127992.
    [8] DENG J, SHAO Y S, GAO N Y, et al.CoFe2O4 magnetic nanoparticles as a highly active heterogeneous catalyst of oxone for the degradation of diclofenac in water[J].Journal of Hazardous Materials, 2013, 262:836-844.
    [9] 姚梦东, 岳俊杰, 徐雪婧, 等.球磨硫化零价铁活化过硫酸盐降解水体中有机氯农药[J].环境工程学报, 2021, 15(8):2563-2575.
    [10] PU M J, MA Y, WAN J, et al.Activation performance and mechanism of a novel heterogeneous persulfate catalyst:metal-organic framework MIL-53(Fe) with FeⅡ/FeⅢ mixed-valence coordinatively unsaturated iron center, Catalysis Science and Technology, 2017, 7:1129-1140.
    [11] PULICHARLA R, DROUINAUD R, BRAR S K, et al.Activation of persulfate by homogeneous and heterogeneous iron catalyst to degrade chlortetracycline in aqueous solution[J].Chemosphere, 2018, 207:543-551.
    [12] 荣幸.磁性生物炭活化过硫酸盐降解水中有机污染物的研究[D].济南:山东大学, 2019.
    [13] WANG S S, ZHAO M Y, ZHOU M, et al.Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water:a critical review[J].Journal of Hazardous Materials, 2019, 373(7):820-834.
    [14] HUSSAIN I, LI M Y, ZHANG Y Q, et al.Insights into the mechanism of persulfate activation with nZVI/BC nanocomposite for the degradation of nonylphenol[J].Chemical Engineering Journal, 2017, 311:163-172.
    [15] DONG C D, CHEN C W, HUNG C M.Synthesis of magnetic biochar from bamboo biomass to activate persulfate for the removal of polycyclic aromatic hydrocarbons in marine sediments[J].Bioresource Technology, 2017,245(Pt A):188-195.
    [16] 潘也唐.含铁碳基多孔复合材料的制备及其催化性能研究[D].哈尔滨:哈尔滨工业大学, 2013.
    [17] 王肖磊, 吴根华, 方国东, 等.过渡金属活化过硫酸盐在环境修复领域的研究进展[J].生态与农村环境学报, 2021, 37(2):145-154.
    [18] 韩春霞, 赵夏冰, 张振武, 等.基于柠檬酸铁的介孔碳材料的制备及电化学研究[J].功能材料, 2015, 46(20):20039-20042.
    [19] ZHU J Y, XU D, WANG C C, et al.Ferric citrate-derived N-doped hierarchical porous carbons for oxygen reduction reaction and electrochemical supercapacitors[J].Carbon, 2017, 115(Complete):1-10.
    [20] 杨照荣, 崔长征, 李炳智, 等.热激活过硫酸盐降解卡马西平和奥卡西平复合污染的研究[J].环境科学学报, 2013, 33(1):98-104.
    [21] 庞娅, 罗琨, 李雪, 等.磁性氮掺石墨烯活化过硫酸钾降解水中亚甲基蓝[J].环境科学学报, 2017, 37(11):4100-4108.
    [22] YIN R L, GUO W Q, WANG H Z, et al.Selective degradation of sulfonamide antibiotics by peroxymonosulfate alone:direct oxidation and nonradical mechanisms[J].Chemical Engineering Journal, 2018, 334:2539-2546.
    [23] CHEN X, GUO H G, LI W, et al.Metal-free carbocatalysis for persulfate activation toward nonradical oxidation:enhanced singlet oxygen generation based on active sites and electronic property[J].Chemical Engineering Journal, 2020, 396:125107.
    [24] 唐亚鑫, 黄雯, 张建强, 等.Fe0/Fe3C羊粪生物炭复合材料的制备及其活化过一硫酸盐降解磺胺嘧啶[J].环境化学, 2022, 41(12):1111-1125.
    [25] 金旭明.过渡金属单原子催化剂活化过硫酸盐降解水中有机污染物的研究[D].杭州:浙江大学, 2021.
    [26] 程浩.有序介孔碳活化过硫酸盐降解水中磺胺嘧啶的效能与机制[D].哈尔滨:哈尔滨工业大学, 2019.
    [27] FANG G D, LIU C, GAO J, et al.Manipulation of persistent free radicals in biochar to activate persulfate forcontaminant degradation[J].Environmental Science & Technology, 2015, 49(9):5645-5653.
    [28] YAN J C, HAN L, GAO W G, et al.Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene[J].Bioresource Technology, 2015, 175:269-274.
    [29] LIU Y B, ZHANG X M, DENG J H, et al.A novel CNTs-Fe3O4 synthetized via a ball-milling strategy as efficient fenton-like catalyst for degradation of sulfonamides[J].Chemosphere, 2021, 277:130305.
    [30] 胡明玥, 王玉如, 范家慧, 等.纳米零价铁活化过硫酸盐降解新兴污染物咖啡因[J].工业水处理, 2022, 42(1):100-107.
    [31] MA Q L, NENGZI L C, ZHANG X Y, et al.Enhanced activation of persulfate by AC@CoFe2O4nanocompositesfor effective removal of lomefloxacin[J].Separation and Purification Technology, 2020, 233:115978.
    [32] JONIDI J A, KAKAVANDI B, JAAFARZADEH N,et al.Fenton-like catalytic oxidation of tetracycline by AC@Fe3O4 as a heterogeneous persulfate activator:adsorption and degradation studies[J].Journal of Industrial and Engineering Chemistry, 2017, 45:323-333.
    [33] AHMADI M, KAKAVANDI B, JORFI S, et al.Oxidative degradation of aniline and benzotriazole over PAC@FeFe2O4:a recyclable catalyst in a heterogeneous photo-fenton-like system[J].Journal of Photochemistry and Photobiology A:Chemistry, 2017, 336:42-53.
    [34] LU J, ZHOU Y, ZHOU Y B.Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides[J].Chemical Engineering Journal, 2021, 422:130126.
    [35] MA X, CHENG Y, GE Y, et al.Ultrasound-enhanced nanosized zerovalent copper activation of hydrogen peroxide for the degradation of norfloxacin[J].Ultrasonics Sonochemistry, 2018, 40(Pt A):763-772.
    [36] LAI B, CHEN Z Y, ZHOU Y X, et al.Removal of high concentration p-nitrophenol in aqueous solution by zero valent iron with ultrasonic irradiation (US-ZVI).Journal of Hazardous Material, 2013, 250/251:220-228.
    [37] CHEN H, ZHANG Z L, FENG M B, et al.Degradation of 2,4-dichlorophenoxyacetic acid in water by persulfate activated with FeS (mackinawite)[J].Chemical Engineering Journal, 2017, 313:498-507.
    [38] WU Y, PRULHO R, BRIGANTE M, et al.Activation of persulfate by Fe(Ⅲ) species:implications for 4-tert-butylphenol degradation[J].Journal of Hazardous Materials, 2017, 322(Pt B):380-386.
    [39] QIANG Z M, ADAMS C.Potentiometric determination of acid dissociation constants (pKa) for human and veterinary antibiotics[J].Water Research, 2004, 38(12):2874-2890.
    [40] 邹涛, 郭灿雄, 段雪, 等.强磁性Fe3O4纳米粒子的制备及其性能表征[J].精细化工, 2002, 19(12):707-710.
    [41] 林正锋, 陈艳, 黄圣南.基于纳米零价铁的类芬顿体系降解土霉素的研究[J].化学工程师, 2017, 31(11):35-40

    ,34.
    [42] ZENG T, YU M D, ZHANG H Y, et al.In situ synthesis of cobalt ferrites-embeddedhollow N-doped carbon as an outstanding catalyst for elimination of organicpollutants[J].Science of the Total Environment, 2017, 593/594:286-296.
    [43] WANG S L, WU J F, LU X Q, et al.Removal of acetaminophen in the Fe2+/persulfate system:Kinetic model and degradation pathways[J].Chemical Engineering Journal, 2019, 358:1091-1100.
    [44] NIE M H, YAN C X, XIONG X Y, et al.Degradation of chloramphenicol using a combination system of simulated solar light, Fe2+ and persulfate[J].Chemical Engineering Journal, 2018, 348:455-463.
    [45] HAYAT W, ZHANG Y Q, HUSSAIN I, et al.Efficient degradation of imidacloprid in water through iron activated sodium persulfate[J].Chemical Engineering Journal, 2019, 370:1169-1180.
    [46] KAMAGATEA M, ASSADI A A, KONE T, et al.Activation of persulfate by irradiated laterite for removal of fluoroquinolones in multi-component systems[J].Journal of Hazardous Materials, 2018, 346:159-166.
    [47] XU Y Y, WANG Y, WAN J Q, et al.Reduced graphene oxide-supported metal organic framework as a synergistic catalyst for enhanced performance on persulfate induced degradation of trichlorophenol[J].Chemosphere, 2020, 240:124849.
  • 期刊类型引用(26)

    1. 黄晓波,刘冠伦,梁永贤,颜敏. 深圳市道路扬尘排放因子研究. 广东化工. 2024(08): 93-95 . 百度学术
    2. 肖扬,姬亚芹,王淼,赵静琦,高玉宗,杨益,杨夏微,王冰冰,李景,丛晓晓. 西宁市道路扬尘排放清单及时空分布特征. 环境化学. 2024(04): 1167-1176 . 百度学术
    3. 王毅东,王明娅,韩桥,李梦飞,王文钜,张雪纯,熊钦卿,张春辉,姜凤成,王明仕. 安阳市夏季道路积尘水溶性离子污染特征及来源分析. 环境化学. 2023(07): 2328-2339 . 百度学术
    4. 张发闯,熊远明,杜成松,蒋宇,汪永东,周敬,印红玲. 不同清扫作业方式与道路积尘/扬尘的关系. 环境卫生工程. 2023(06): 97-104 . 百度学术
    5. 刘扬,王颖,刘灏,秦闯,王思潼,李博,郭春晔. 基于WRF-Chem模拟验证的天水市主城区大气污染源排放清单. 中国环境科学. 2022(01): 32-42 . 百度学术
    6. 王海斌,樊守彬,韩力慧,李婷婷,曲松,崔浩然,刘俊芳. 北京市通州区秋季典型工地出口道路尘负荷排放特征. 环境工程技术学报. 2022(01): 6-14 . 百度学术
    7. 马彤,巴利萌,孙璐萍,刘佳媛,王杰,程晓夏,郑易飞,高健. 基于光散射快速检测法的渭南市道路积尘研究. 大气与环境光学学报. 2022(03): 336-346 . 百度学术
    8. 杨乃旺,宋文斌,闫东杰,宋雪娟,杨玉林,夏永军. 基于积尘负荷的西安市铺装道路扬尘排放研究. 环境科学学报. 2021(04): 1259-1266 . 百度学术
    9. 刘俊芳,樊守彬,郭秀锐,崔浩然,申亚倩. 基于车载移动监测的北京市丰台区道路扬尘源排放特征. 环境科学学报. 2021(11): 4423-4429 . 百度学术
    10. 张金,姬亚芹,邢雅彤,吕帅,丁江颖,赵静琦. 天津市高校夏季道路扬尘PM_(2.5)中水溶性离子污染特征及来源. 环境科学学报. 2020(05): 1604-1610 . 百度学术
    11. 亓浩雲,樊守彬,王凯. 北京市不同功能区冬季道路扬尘排放特征. 环境工程技术学报. 2020(03): 323-329 . 百度学术
    12. 晁娜,蒋琦清,朱俊,杨强,滕富华,吴建,陈加山. 省级高空间分辨率扬尘源排放清单研究. 中国环境监测. 2020(05): 63-71 . 百度学术
    13. 郭硕,肖捷颖,安塞,周盼,秦伟,刘娟,姬亚芹. 利用快速检测法研究石家庄道路交通扬尘排放特征. 环境污染与防治. 2019(02): 206-210 . 百度学术
    14. 赵静琦,姬亚芹,李越洋,张蕾,王士宝. 天津市道路车流量特征分析. 环境科学研究. 2019(03): 399-405 . 百度学术
    15. 鲁朝旭. 南充市大气颗粒物(PM_(2.5))污染研究. 绿色科技. 2019(06): 102-105 . 百度学术
    16. 竹涛,王若男,袁前程,刘笑阳,张星,刘海兵,刘锋. 基于积尘负荷法对北京市铺装道路扬尘排放清单的研究. 太原理工大学学报. 2019(04): 503-509 . 百度学术
    17. 乔玉红,叶芝祥,杨怀金,张罡. 成都市铺装道路积尘碳组分特征及排放因子研究. 四川环境. 2019(05): 7-13 . 百度学术
    18. 周盼,秦伟,郭硕,安塞,肖捷颖,刘娟,姬亚芹. 石家庄冬季道路积尘水溶性离子污染特征及来源分析. 环境化学. 2018(05): 952-958 . 百度学术
    19. 王士宝,姬亚芹,张伟,张蕾,赵静琦,李越洋. 乌鲁木齐道路扬尘PM_(2.5)粒度乘数特征. 环境科学研究. 2018(07): 1201-1206 . 百度学术
    20. 赵静琦,姬亚芹,张蕾,王士宝,李越洋. 基于样方法的天津市春季道路扬尘PM_(2.5)中水溶性离子特征及来源解析. 环境科学. 2018(05): 1994-1999 . 百度学术
    21. 舒丽,罗彬,胡健,夏杰,张凌云,罗斌,钟利健,张自全. 南充市大气PM_(10)与PM_(2.5)排放清单及特征. 中国环境监测. 2018(03): 84-92 . 百度学术
    22. 祝嘉欣,成海容,虎彩娇,王祖武. 武汉市道路扬尘源排放清单及空间分布特征研究. 南京信息工程大学学报(自然科学版). 2018(05): 557-562 . 百度学术
    23. 周子航,邓也,谭钦文,吴柯颖,杨欣悦,周小玲. 四川省人为源大气污染物排放清单及特征. 环境科学. 2018(12): 5344-5358 . 百度学术
    24. TANG Ying-Xiao,LIAO Hong,FENG Jin. Estimating emissions and concentrations of road dust aerosol over China using the GEOS-Chem model. Atmospheric and Oceanic Science Letters. 2017(04): 298-305 . 必应学术
    25. 李树立,姬亚芹,朱振宇,张诗建,张伟,赵静波. 天津市秋季道路降尘粒度乘数的分布特征. 环境化学. 2017(03): 480-485 . 百度学术
    26. 张伟,姬亚芹,张军,张蕾,王伟,王士宝. 辽宁典型城市道路扬尘PM_(2.5)中水溶性无机离子组分特征及来源解析. 环境科学. 2017(12): 4951-4957 . 百度学术

    其他类型引用(26)

  • 加载中
计量
  • 文章访问数:  156
  • HTML全文浏览量:  35
  • PDF下载量:  4
  • 被引次数: 52
出版历程
  • 收稿日期:  2022-10-28

目录

    /

    返回文章
    返回