中国科学引文数据库(CSCD)来源期刊
中国科技核心期刊
环境科学领域高质量科技期刊分级目录T2级期刊
RCCSE中国核心学术期刊
美国化学文摘社(CAS)数据库 收录期刊
日本JST China 收录期刊
世界期刊影响力指数(WJCI)报告 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

烟煤热解过程分子官能团的演化特征及动力学模型

杨琦玲 王儒威

杨琦玲, 王儒威. 烟煤热解过程分子官能团的演化特征及动力学模型[J]. 环境工程, 2023, 41(7): 138-144. doi: 10.13205/j.hjgc.202307019
引用本文: 杨琦玲, 王儒威. 烟煤热解过程分子官能团的演化特征及动力学模型[J]. 环境工程, 2023, 41(7): 138-144. doi: 10.13205/j.hjgc.202307019
YANG Qiling, WANG Ruwei. EVOLUTION CHARACTERISTIC AND KINETIC MODEL FOR FUNCTIONAL GROUPS IN BITUMINOUS COAL DURING PYROLYSIS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 138-144. doi: 10.13205/j.hjgc.202307019
Citation: YANG Qiling, WANG Ruwei. EVOLUTION CHARACTERISTIC AND KINETIC MODEL FOR FUNCTIONAL GROUPS IN BITUMINOUS COAL DURING PYROLYSIS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 138-144. doi: 10.13205/j.hjgc.202307019

烟煤热解过程分子官能团的演化特征及动力学模型

doi: 10.13205/j.hjgc.202307019
基金项目: 

国家自然科学基金项目(41773099)

详细信息
    作者简介:

    杨琦玲(1996-),女,硕士,主要研究方向为燃煤环境化学过程。895294222@qq.com

    通讯作者:

    王儒威(1985-),男,副教授,主要研究方向为环境有机地球化学。wangruwei@jnu.edu.cn

EVOLUTION CHARACTERISTIC AND KINETIC MODEL FOR FUNCTIONAL GROUPS IN BITUMINOUS COAL DURING PYROLYSIS

  • 摘要: 煤热解机理研究对提高煤炭利用效率和减轻生态环境影响具有重要意义。利用傅里叶红外光谱(FTIR)和气相色谱-质谱分析探究煤分子结构官能团和多环芳烃(PAHs)在煤热解过程中的演化特征及热解动力学行为。结果表明:当温度<300℃时,芳香族和脂肪族官能团减少主要缘于煤结构空隙小分子基团的挥发,含氧官能团减少主要因为在该热演化过程中自缔合羟基氢键受热断裂;当温度在300~600℃区间,C—O和脂肪族分别在300,400℃时受热分解,导致芳香族、脂肪族和含氧官能团总量迅速减少。各官能团在高温阶段的活化能均高于低温阶段,·OH和C—O在整个热解阶段的动力学模型均符合二级反应模式,脂肪族官能团在25~400,400~600℃区间分别符合两相界面模型和二级反应模式,C=O在25~300,300~600℃区间分别符合三级扩散和二级反应模式。
  • [1] 李刚.煤热解中间体和自由基表征及反应机理研究[D].大连:大连理工大学,2015:1-5.
    [2] 卢昌义.现代环境科学概论[M].厦门:厦门大学出版社,2020:349-351.
    [3] WANG R W, SUN R Y, LIU G J, et al.A review of the biogeochemical controls on the occurrence and distribution of polycyclic aromatic compounds (PACs) in coals[J].Earth-Science Reviews, 2017, 171:400-418.
    [4] 王楠.不同构造变形程度下高煤级煤分子结构演化特征[D].西安:西安科技大学, 2021, 2015:2-5.
    [5] 张双全.煤化学[M].徐州:中国矿业大学出版社, 2019:169-179.
    [6] 乐嘉炜.煤中小分子化合物及催化剂对煤热解产物分布的影响[D].上海:华东理工大学, 2017:4-5.
    [7] COATS A W, REDFERN J P.Thermogravimetric analysis:a review[J].Analyst, 1963, 88(1053):906-924.
    [8] FLYNN J H.Thermal analysis kinetics-past, present and future[J].Thermochimica Acta, 1992, 203:519-526.
    [9] BAMFORD C H, TIPPER C F H.Decomposition reactions of solids[M].Elsevier, 1980:177-200.
    [10] ZHOU C C, LIU G J, CHENG S, et al.Thermochemical and trace element behavior of coal gangue, agricultural biomass and their blends during co-combustion[J].Bioresource Technology, 2014, 166:243-251.
    [11] OZAWA T.A new method of analyzing thermogravimetric data[J].Bulletin of The Chemical Society of Japan, 1965, 38(11):1881-1886.
    [12] FLYNN J H, WALL L A.A quick, direct method for the determination of activation energy from thermogravimetric data[J].Journal of Polymer Science Part B:Polymer Letters, 1966, 4(5):323-328.
    [13] KISSINGER H E.Reaction kinetics in differential thermal analysis[J].Analytical Chemistry, 1957, 29(11):1702-1706.
    [14] SHI T, WANG X F, DENG J, et al.The mechanism at the initial stage of the room-temperature oxidation of coal[J].Combustion and Flame, 2005, 140(4):332-345.
    [15] LIN X C, WANG C H, IDETA K, et al.Insights into the functional group transformation of a Chinese brown coal during slow pyrolysis by combining various experiments[J].Fuel, 2014, 118:257-264.
    [16] IBARRA J V, MOLINER R, BONET A J.FTIR investigation on char formation during the early stages of coal pyrolysis[J].Fuel, 1994, 73(6):918-924.
    [17] MURAKAMI K, SHIRATO H, NISHIYAMA Y.In situ infrared spectroscopic study of the effects of exchanged cations on thermal decomposition of a brown coal[J].Fuel, 1997, 76(7):655-661.
    [18] NIU Z Y, LIU G J, YIN H, et al.Investigation of mechanism and kinetics of non-isothermal low temperature pyrolysis of perhydrous bituminous coal by in-situ FTIR[J].Fuel, 2016, 172:1-10.
    [19] YU J L, LUCAS J A, WALL T F.Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties:a review[J].Progress in Energy and Combustion Science, 2007, 33(2):135-170.
    [20] 钮志远.典型煤的官能团热解机理、动力学分析及影响因素研究[D].合肥:中国科学技术大学, 2017:56-59.
    [21] 郝长胜,袁迎春,贾廷贵,等.不同变质程度煤的化学结构红外光谱研究[J].煤矿安全, 2022, 53(11):15-22.
    [22] 贾廷贵,李璕,曲国娜,等.不同变质程度煤样化学结构特征FTIR表征[J].光谱学与光分析, 2021, 41(11):3363-3369.
    [23] 宋昱, 朱炎铭, 李伍.东胜长焰煤热解含氧官能团结构演化的13C-NMR和FTIR分析[J].燃料化学学报, 2015, 43(5):519-529.
    [24] 张嬿妮, 刘春辉, 宋佳佳, 等.长焰煤低温氧化主要官能团迁移规律研究[J].煤炭科学技术, 2020, 48(3):188-196.
    [25] 刘颖健.煤氧化过程中自由基-活性基团作用机理[D].唐山:华北理工大学, 2016.
    [26] 石国京.新疆低质炼焦煤改质炼焦及热解过程煤化学结构演变规律研究[D].重庆:重庆大学, 2018.
    [27] 苗树伟.煤热解及氧化过程中含氧官能团的演化[D].武汉:华中科技大学, 2018.
    [28] ZHAO J, DENG J, CHEN L, et al.Correlation analysis of the functional groups and exothermic characteristics of bituminous coal molecules during high-temperature oxidation[J].Energy, 2019, 181:136-147.
    [29] 解强, 梁鼎成, 田萌, 等.升温速率对神木煤热解半焦结构性能的影响[J].燃料化学学报, 2015, 43(7):798-805.
    [30] 常娜, 甘艳萍, 陈延信.升温速率及热解温度对煤热解过程的影响[J].煤炭转化, 2012, 35(3):1-5.
    [31] 董洁.煤热解过程中PAHs的形成及其催化裂解特性[D].太原:太原理工大学, 2013.
    [32] CAI F X, WANG R W, CAI J W, et al.Investigation of the maturation effects on biomarker distributions in bituminous coals[J].Organic Geochemistry, 2022, 173:104496.
    [33] IBARRA J V, MUNOZ E, MOLINER R.FTIR study of the evolution of coal structure during the coalification process[J].Organic Geochemistry, 1996, 24(6/7):725-735.
    [34] MIURA K, MAE K, LI W, et al.Estimation of hydrogen bond distribution in coal through the analysis of OH stretching bands in diffuse reflectance infrared spectrum measured by in-situ technique[J].Energy & Fuels, 2001, 15(3):599-610.
  • 加载中
计量
  • 文章访问数:  177
  • HTML全文浏览量:  16
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-24

目录

    /

    返回文章
    返回