CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电发酵对餐厨垃圾和香菇菌糠高温厌氧消化的影响

宋娜 赵盼 关伟杰 陈丽玮 章爽 汪群慧

宋娜, 赵盼, 关伟杰, 陈丽玮, 章爽, 汪群慧. 电发酵对餐厨垃圾和香菇菌糠高温厌氧消化的影响[J]. 环境工程, 2023, 41(7): 145-149. doi: 10.13205/j.hjgc.202307020
引用本文: 宋娜, 赵盼, 关伟杰, 陈丽玮, 章爽, 汪群慧. 电发酵对餐厨垃圾和香菇菌糠高温厌氧消化的影响[J]. 环境工程, 2023, 41(7): 145-149. doi: 10.13205/j.hjgc.202307020
SONG Na, ZHAO Pan, GUAN Weijie, CHEN Liwei, ZHANG Shuang, WANG Qunhui. EFFECT OF ELECTRO-FERMENTATION ON HIGH TEMPERATURE ANAEROBIC DIGESTION OF FOOD WASTE AND SPENT MUSHROOM SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 145-149. doi: 10.13205/j.hjgc.202307020
Citation: SONG Na, ZHAO Pan, GUAN Weijie, CHEN Liwei, ZHANG Shuang, WANG Qunhui. EFFECT OF ELECTRO-FERMENTATION ON HIGH TEMPERATURE ANAEROBIC DIGESTION OF FOOD WASTE AND SPENT MUSHROOM SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 145-149. doi: 10.13205/j.hjgc.202307020

电发酵对餐厨垃圾和香菇菌糠高温厌氧消化的影响

doi: 10.13205/j.hjgc.202307020
基金项目: 

天津市教委科研计划项目"餐厨垃圾产醇产甲烷两相厌氧消化系统构建及机理研究"(2021KJ064)

详细信息
    作者简介:

    宋娜(1990-),女,讲师,主要研究方向为生物质资源化利用。huanjing091sn@163.com

    通讯作者:

    汪群慧(1959-),女,教授,主要研究方向为固体废物处理与处置技术。wangqh59@163.com

EFFECT OF ELECTRO-FERMENTATION ON HIGH TEMPERATURE ANAEROBIC DIGESTION OF FOOD WASTE AND SPENT MUSHROOM SUBSTRATE

  • 摘要: 为提高餐厨垃圾和菌糠高温共消化的产气性能,设置对照、电发酵、活性炭、电发酵+活性炭4个试验组同时进行高温批式厌氧消化实验,从累积甲烷产量、电化学特性、厌氧消化系统稳定性3个方面探究电发酵和添加活性炭对餐厨垃圾和菌糠高温厌氧共消化的影响。结果表明:与对照组相比,电发酵、活性炭、电发酵+活性炭组的累积甲烷产量分别提高6.2%、7.6%和21.9%,底物的生物降解率分别增加6.4%、7.6%和16.9%,说明电发酵和添加活性炭可以协同促进产气;施加弱电场和添加活性炭均能一定程度上降低游离氨(FAN)浓度,并加快产甲烷菌对VFAs的转化和降解,缓解因发酵体系FAN和VFAs积累导致的产甲烷菌活性降低现象。另外,电发酵、电发酵+活性炭组的伏安特性曲线中有明显的氧化还原峰,进一步说明外加弱电场和添加活性炭可以促进细胞增殖和电子传递过程,加快电化学氧化还原反应的进行,提升厌氧消化系统的稳定性和目标产物的产量。该研究成果为推动微生物学与电化学新兴交叉研究方向的发展,以及餐厨垃圾资源化利用的新途径开发提供了新的参考。
  • [1] MELIKOGLU M, LIN C S K, WEBB C.Analysing global food waste problem:pinpointing the facts and estimating the energy content[J].Central European Journal of Engineering, 2013, 3(2):157-164.
    [2] MA X X, YU M, SONG N, et al.Effect of ethanol pre-fermentation on organic load rate and stability of semi-continuous anaerobic digestion of food waste[J].Bioresource Technology, 2020, 299:122587.
    [3] REN Y Y, YU M, WU C F, et al.A comprehensive review on food waste anaerobic digestion:research updates and tendencies[J].Bioresource Technology, 2018, 247:1069-1076.
    [4] GAO Z, MA Y Q, LIU Y, et al.Waste cooking oil used as carbon source for microbial lipid production:promoter or inhibitor[J].Environmental Research, 2022, 203:111881.
    [5] WANG P, WANG H T, QIU Y Q, et al.Microbial characteristics in anaerobic digestion process of food waste for methane production:a review[J].Bioresour Technol, 2018, 248(Pt A):29-36.
    [6] AMPESE L C, SGANZERLA W G, DI DOMENICO ZIERO H, et al.Research progress, trends, and updates on anaerobic digestion technology:a bibliometric analysis[J].Journal of Cleaner Production, 2022, 331:130004.
    [7] 许跃,廖欢, 张静,等.颗粒活性炭强化餐厨垃圾中食用油厌氧消化产甲烷[J].中国给水排水, 2022, 38(11):109-114.
    [8] HU W, DI Q, LIANG T, et al.Effects of spent mushroom substrate biochar on growth of oyster mushroom (Pleurotus ostreatus)[J].Environmental Technology & Innovation, 2022, 28.
    [9] 张文哲,陈静,刘玉,等.中温和高温厌氧消化的比较[J].化工进展, 2018, 37(12):4853-4861.
    [10] WILSON C A, MURTHY S M, FANG Y, et al.The effect of temperature on the performance and stability of thermophilic anaerobic digestion[J].Water Sci Technol, 2008, 57(2):297-304.
    [11] 郭香麟,左剑恶,史绪川,等.餐厨垃圾与秸秆混合中温和高温厌氧消化对比[J].环境科学, 2017, 38(7):3070-3077.
    [12] PARK J, LEE B, TIAN D, et al.Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell[J].Bioresource Technology, 2018,247:226-233.
    [13] LIU S, DENG Z, LI H, et al.Contribution of electrodes and electric current to process stability and methane production during the electro-fermentation of food waste[J].Bioresource Technology, 2019,288:121536.
    [14] 龙宪钢,许坤德,杨思霞,等.电化学厌氧消化的研究进展[J].水处理技术, 2022, 48(3):30-35.
    [15] QIN X, LU X Q, CAI T, et al.Magnetite-enhanced bioelectrochemical stimulation for biodegradation and biomethane production of waste activated sludge[J].Science of the Total Environment, 2021,789:147859.
    [16] ZHAO Z Q, LI Y, ZHANG Y B, et al.Sparking anaerobic digestion:promoting direct interspecies electron transfer to enhance methane production[J].iScience, 2020,23(12):101794.
    [17] PENG H, ZHANG Y B, TAN D M, et al.Roles of magnetite and granular activated carbon in improvement of anaerobic sludge digestion[J].Bioresource Technology, 2018,249:666-672.
    [18] LIN C B, WU P, LIU Y D, et al.Enhanced biogas production and biodegradation of phenanthrene in wastewater sludge treated anaerobic digestion reactors fitted with a bioelectrode system[J].Chemical Engineering Journal, 2019,365:1-9.
    [19] VU M T, NOORI M T, MIN B.Conductive magnetite nanoparticles trigger syntrophic methane production in single chamber microbial electrochemical systems[J].Bioresource Technology, 2020, 296:122265.
  • 加载中
计量
  • 文章访问数:  79
  • HTML全文浏览量:  14
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-16

目录

    /

    返回文章
    返回