PASSIVATION OF ZINC, LEAD AND CADMIUM CONTAMINATED SOIL BY INORGANIC SALT MODIFIED BENTONITE
-
摘要: 高浓度重金属复合污染土壤的同步钝化一直是土壤钝化研究中的难点,因此,探究了多种无机盐改性膨润土对高浓度重金属复合污染土壤的同步钝化效果,结果表明:NaCl、KCl、Na2CO3、K2CO3、NaNO3、KNO3、Na3PO4、KH2PO4、KMnO4、K3PO4、NaH2PO4、NaHCO3等无机盐药剂在相同条件下制备的改性膨润土对多种重金属高浓度复合污染土壤的同步钝化效果存在明显差异,择优选择Na2CO3、K3PO4和NaH2PO4 3种改性药剂进行改性,在最佳改性条件下,NaH2PO4改性膨润土同步钝化效果整体最佳,有效态Zn、Pb、Cd的削减率最高分别达到26.28%、28.84%和31.42%。NaH2PO4改性过程能够将膨润土颗粒中的Ca元素交换并生成新的CaHPO4·2H2O独立晶体,同时使膨润土颗粒具有更好的插层、层状结构和裂缝结构以及更广泛的Na+分布,膨润土改性过程中的阳离子交换作用可能会进一步促进改性膨润土对于重金属的钝化效果。Abstract: The synchronous passivation of soil contaminated with high concentration of heavy metals is a difficulty in soil passivation research. In this paper, the synchronous passivation effect of various inorganic salts modified bentonite on soil contaminated with high concentration of heavy metals was studied. The results showed the modified bentonite prepared by NaCl, KCl, Na2CO3, K2CO3, NaNO3, KNO3, Na3PO4, KH2PO4, KMnO4, K3PO4, NaH2PO4 and NaHCO3 under the same condition had obvious differences in the synchronous passivation effect of multiple heavy metal high concentration composite polluted soil. Na2CO3, K3PO4 and NaH2PO4 were selected, by their performance to optimize the modification conditions. Under the optimal modification conditions, the synchronous passivation effect of NaH2PO4 modified bentonite was the best overall. The reduction rates of available Zn, Pb and Cd reached 26.28%, 28.84% and 31.42%. In the modification process of NaH2PO4, calcium in bentonite particles could be exchanged and new independent crystals of CaHPO4·2H2O could be formed. Meanwhile, bentonite particles have better intercalation, layered structure, fracture structure and wider distribution of Na+. Cation exchange interaction during bentonite modification may further promote the passivation effect of modified bentonite on heavy metals.
-
Key words:
- modified bentonite /
- soil heavy metals /
- synchronous passivation /
- passivation mechanism
-
[1] 王鹤亭.土壤重金属污染现状与修复技术应用[J].南方农机, 2021,52(13):64-66. [2] 瞿飞, 范成五, 刘桂华, 等.不同钝化剂对贵州典型黄壤重金属有效态的影响[J].南方农业学报, 2019,50(9):1967-1972. [3] 邢维芹, 张纯青, 周冬, 等.磷酸盐、石灰和膨润土降低冶炼厂污染石灰性土壤重金属活性的研究[J].土壤通报, 2019,50(5):1245-1252. [4] 林海, 靳晓娜, 董颖博, 等.膨润土对不同类型农田土壤重金属形态及生物有效性的影响[J].环境科学, 2019,40(2):945-952. [5] VRȊNCEANU N O, MOTELICǍ D M, DUMITRU M, et al.Assessment of using bentonite, dolomite, natural zeolite and manure for the immobilization of heavy metals in a contaminated soil:the Copşa Micǎ case study (Romania)[J].Catena, 2019,176:336-342. [6] ZHANG D, DING A F, LI T, et al.Immobilization of Cd and Pb in a contaminated acidic soil amended with hydroxyapatite, bentonite, and biochar[J].Journal of Soils and Sediments, 2021,21(6):2262-2272. [7] 张金秀, 何永美, 李博, 等.三种黏土矿物对蚕豆生长和重金属含量的影响[J].农业环境科学学报, 2019,38(4):845-854. [8] YI N, WU Y G, FAN L, et al.Remediating Cd-contaminated soils usingnatural and chitosan-introduced zeolite,bentonite, and activated carbon[J].Polish Journal of Environmental Studies, 2019,28(3):1461-1468. [9] NIU M D, LI G X, CAO L, et al.Preparation of sulphate aluminate cement amended bentonite and its use in heavy metal adsorption[J].Journal of Cleaner Production, 2020,256:120700. [10] 张俊俊.膨润土的性能改进及与混合料联合固化土壤铅锌的技术研究[D].西安:西安建筑科技大学, 2020. [11] 黄虎臣, 梁小凤, 付旺, 等.有机复合改性膨润土固定尾矿浸出液中Zn的研究[J].广西科学, 2021,28(3):284-289,300. [12] 宋安康, 龚亚龙, 高晓梅, 等.季铵盐改性膨润土对铬污染土壤的稳定化性能[J].非金属矿, 2020,43(4):96-98. [13] ZHENG X, XU M D, YANG S, et al.Novel bio-inspired three-dimensional nanocomposites based on montmorillonite and chitosan[J].International Journal of Biological Macromolecules, 2020,165(PartB):2702-2710. [14] 肖庆超,宋成怀,郝双雷.生物炭和磷肥复合修复有色矿区重金属污染土壤的效果[J].环境工程,2015,33(增刊1):840-842,860. [15] 中国建筑材料工业协会.膨润土:GB/T 20973-2007[S].2007. [16] 付煜恒,张惠灵,王宇,等.磷酸盐对铅镉复合污染土壤的钝化修复研究[J].环境工程,2017,35(9):176-180,163. [17] 孙国红, 王鹏超, 徐应明, 等.施用钾肥对稻田土镉污染钝化修复效应影响研究[J].灌溉排水学报, 2019,38(5):38-45. [18] 江海燕, 王志国, 赵秋香, 等.胡敏酸改性膨润土钝化污染土壤Pb&Cd及机理[J].环境保护科学, 2014,40(1):46-50. [19] 丁苏苏, 李凯华, 黄珏瑛, 等.含磷材料修复铅、镉污染农田土壤效果及影响因素研究进展[J].环境污染与防治, 2020,42(7):929-936. [20] 姜淼, 王维业, 王一鹏, 等.重金属污染土壤的无机固化稳定材料研究进展[J].环境保护科学, 2021,47(4):1-9. [21] 苑丽质.膨润土改性及其吸附性能研究[J].应用化工, 2016,45(3):482-484. [22] 卜帅宾.Cu2+、Pb2+、Zn2+在BS-12两性修饰膨润土上的吸附及交互作用[D].杨凌:西北农林科技大学, 2020. [23] 黄迪, 黄志红, 孔辉, 等.重金属污染农田土壤的稳定化修复技术及其修复实践研究[J].中国农学通报, 2021,37(8):72-78. [24] 赵少婷, 李建敏, 杜宇.土壤中重金属铬的形态、价态评价综述[J].农学学报, 2022,12(4):24-28. [25] 王永平, 周子柯, 滕昊蔚, 等.滇南小流域不同土地利用类型土壤重金属形态特征及污染评价[J].环保科技, 2021,27(1):38-45. [26] 安定明.矿山尾砂土壤重金属污染及形态分析[J].矿冶工程, 2020,40(4):110-113. [27] 宋尚.冶炼厂周边土壤中重金属形态的化学分析[J].中国金属通报, 2021(5):13-14. [28] 任建晓.改性膨润土的制备与表征及对松香酸吸附性能的研究[D].西安:陕西科技大学, 2014. [29] 王睿.膨胀土在重金属污染条件下工程性质变化规律以及机理研究[D].合肥:合肥工业大学, 2020.
点击查看大图
计量
- 文章访问数: 90
- HTML全文浏览量: 8
- PDF下载量: 3
- 被引次数: 0