IN-SITU PREPARATION OF Cu/Al MODIFIED MCM-41 MOLECULAR SIEVE CATALYST AND ITS DEOXYGENATION PERFORMANCE
-
摘要: 利用一步水热合成法制备了Cu、Al改性的Cu/Al-MCM-41分子筛催化剂,用于再生水中DO的脱除,考察了活性金属添加量、催化剂制备pH、晶化温度和晶化时间对DO去除率的影响。结果表明:在n(Cu)/n(Si)、n(Al)/n(Si)分别为0.2、0.1,pH=10.5,140℃下晶化36 h,制得的Cu/Al-MCM-41在反应60 min后对再生水中DO的去除率可达到97.0%。同时,再生水与模拟水的水质对DO去除效果的影响较小。碳酰肼在Cu/Al-MCM-41的催化作用下被二次分解成为N2和4个氢原子(H·),催化剂表面吸附H·浓度的增加使得DO被快速还原,且Cu、Al的引入明显增加了酸性位点的数量,使得催化剂的总酸性增强,促使DO分解产生氧化性更强的羟基自由基(·OH),与具有较高的活性和还原性的H·结合生成水,加速了DO的去除。Abstract: Cu/Al-MCM-41 molecular sieve catalyst modified by Cu and Al was prepared by a one-step hydrothermal synthesis method for desolved oxygen (DO) removal in reclaimed water. The effects of the adding amount of active metal, pH of catalyst preparation, crystallization temperature and crystallization time on the removal rate of DO were investigated. The results revealed that when the molar ratio of Cu/Si and Al/Si were 0.2 and 0.1, respectively, pH was 10.5, and Cu/Al-MCM-41 was crystallized at 140℃ for 36 hours, the removal rate of DO in reclaimed water reached 97.0% after 60 min. Meanwhile, the quality of reclaimed water and simulated water had little influence on the DO removal effect. Carbohydrazide was secondary decomposed into N2 and four hydrogen atoms (H·), under the catalysis of Cu/Al-MCM-41. The increase in the concentration of hydrogen atoms adsorbed on the catalyst surface led to the rapid reduction of DO concentration. The introduction of Cu and Al could significantly increase the acidic sites and enhance the total acidity of catalysts to promote the decomposition of DO, to generate more oxidizing hydroxyl radicals (·OH), which can combine with hydrogen atoms with higher activity and reducibility to form H2O. This speeds up the removal of dissolved oxygen.
-
Key words:
- Cu/Al-MCM-41 /
- molecular sieves /
- catalyst /
- dissolved oxygen /
- preparation /
- reclaimed water
-
[1] 于江杰.我国再生水回用现状分析及展望[J].四川水泥,2019,274(6):119. [2] 张琦,王亚娥,李杰,等.溶解氧对生物海绵铁体系中海绵铁腐蚀的影响[J].环境工程,2023,41(2):60-65. [3] 中华人民共和国住房和城乡建设部.城镇供热管网设计规范:CJJ 34-2010[M].2010. [4] 马淑芹,于宏兵,蒋彬,等.电力行业节能减排途径探讨[J].环境工程,2008,26(增刊1):196-199,251. [5] 杜旭昌.化学除氧在锅炉水处理中的应用[J].造纸装备及材料,2021,50(11):136-138. [6] 王正平,杨淑华.新型除氧剂研究[J].应用科技,2001,28(3):37-38. [7] 丁姗姗,曹顺安,胡家元.锅炉给水处理中的化学除氧剂[J].工业水处理,2010,30(4):17-21. [8] 肖栓柱.碳酰肼在电厂化学中的应用[J].石化技术,2017,24(5):51. [9] LIANG M S, YUAN J, LI L, et al.The preparation of a catalyst doped with Cu and Al on MCM-41 and its catalytic reduction removal of dissolved oxygen in reclaimed water at low temperatures[J].New Journal of Chemistry,2021,45(25):11336-11346. [10] 王洁,梁美生,叶翠平.改性活性炭纤维催化碳酰肼去除给水中的溶解氧[J].华侨大学学报(自然科学版),2018,39(5):720-725. [11] 张恒瑞,梁美生,陈曦,等.甘氨酸席夫碱Cu配合物催化还原去除锅炉给水中溶解氧的探讨[J].太原理工大学学报,2022,53(1):44-50. [12] 袁杰.Cu-SBA-15催化剂的制备及催化去除再生水中溶解氧[D].太原:太原理工大学,2021. [13] 陈树军,裴剑霖,付越,等.改性MCM41孔内水分子吸附扩散行为的模拟研究[J].辽宁石油化工大学学报,2022,42(3):1-7. [14] SELVARAJ M, SESHADRI K S, PANDURANGAN A, et al.Highly selective synthesis of trans-stilbene oxide over mesoporous Mn-MCM-41 and Zr-Mn-MCM-41 molecular sieves[J].Microporous & Mesoporous Materials,2005,79(1/2/3):261-268. [15] 鲁奇林,李雨擎.MCM-41分子筛的水热合成、改性及其应用研究进展[J].现代化工,2019,39(4):40-44. [16] CARLO P, ROBERTO M.Porous materials in catalysis:challenges for mesoporous materials[J].Chemical Society Reviews,2013,42(9):3956-3976. [17] 蔡超.功能化MCM-41介孔材料的合成与催化性能的研究[D].天津:天津大学,2011. [18] TEWFIK D A, LAMIA B, RACHIDA H, et al.Comparison of lewis acidity between Al-MCM-41 pure chemicals and Al-MCM-41 synthesized from bentonite[J].Bulletin of Chemical Reaction Engineering & Catalysis,2019,14(2):358-368. [19] 周旭平.含杂原子介孔材料的合成及其催化性能研究[D].镇江:江苏大学,2010. [20] 胡灯红,郑华均.MCM-41介孔分子筛改性研究进展[J].浙江化工,2011,42(3):15-19. [21] TANG W W, ZHANG H, LU Y, et al.Two-step hydrothermal synthesis of β-MCM-41 composite molecular sieves as supports of bifunctional catalysts for hydroisomerization of n-heptane[J].Journal of Porous Materials,2016,23(6):1489-1493. [22] 孙洪平.金属改性介孔分子筛的制备及其催化氧化脱硫研究[D].大庆:东北石油大学,2017. [23] 李来胜,孙强强.用于催化臭氧氧化的金属改性MCM-41研究进展[J].华南师范大学学报(自然科学版),2013,45(6):124-128. [24] 刘东坡,陈伟锐,王静,等.铁锌共掺杂MCM-41构建双酸性中心及其催化臭氧化布洛芬[J].环境工程学报,2022,16(9):2850-2861. [25] 张花,杨华明.碱性水热环境下制备MCM-41介孔材料的分形表征[J].硅酸盐通报,2014,33(11):2952-2957. [26] LOCUS R, VERBOEKEND D, ZHONG R, et al.Correction to enhanced acidity and accessibility in Al-MCM-41 through aluminum activation[J].Chemistry of Materials,2016,29(2):904. [27] QI J, NEEVA B, DAVID J C, et al.Carbon nanotubes as catalysts for direct carbohydrazide fuel cells[J].Carbon,2015,89:142-147. [28] 王俊梅,杨继光,闫新琦,等.水中联氨浓度检测方法的探讨[J].计量技术,2014,477(5):23-26.
点击查看大图
计量
- 文章访问数: 160
- HTML全文浏览量: 18
- PDF下载量: 3
- 被引次数: 0