PERFORMANCE ANALYSIS AND COMPARISON OF A NEW REDUCED GRAPHENE OXIDE FILTER MATERIAL AND COMMON ELECTRET MATERIAL
-
摘要: 针对疫情防控常态化背景下,探究一种具有多功能性的还原氧化石墨烯复合过滤材料。对还原氧化石墨烯(rGO)复合功能性过滤材料与常用驻极体过滤材料(PTFE)进行过滤特性、抗菌等性能对比实验分析,结果表明:在首次实验时,rGO滤料的过滤效率与滤速的变化呈正相关,PTFE滤料的过滤效率的趋势相反,且过滤效率整体上优于rGO滤料。但后续实验中在0.25 m/s滤速下,rGO滤料对PM2.5的过滤效率比PTFE滤料高3.6百分点,但rGO滤料的过滤阻力约为PTFE滤料的2倍。当过滤风速为0.05 m/s时,相比于PTFE滤料,rGO滤料容尘量约为其7倍。此外发现由于rGO具有包裹与纳米刀作用,使得rGO滤料同时兼有一定抗菌抑菌性。该成果为后疫情时代中空气净化器的选择以及rGO滤料性能的提高提供参考依据,也为后续的复合滤料研究与应用提供了新思路。Abstract: It is necessary to research and develop a multifunctional composite filter material under the current context of regular epidemic prevention and control. Reduced graphene oxide (rGO) composite functional filter material and the electret air filtration material (PTFE) were chosen for the experimental study. Tests on the filtration characteristics and antibacterial properties and other properties were conducted. Results showed that at the beginning of the filtration experiment, the filtration efficiency of rGO filter material was positively correlated with the change in filtration rate, while the trend of the filtration efficiency of PTFE filter material was opposite, and the filtration efficiency was better than that of rGO filter material overall. In the subsequent experiments, the filtration efficiency of rGO filter material was generally higher than that of PTFE filter material, but the filtration resistance of rGO filter material was about twice that of PTFE filter material. The dust capacity of rGO filter material was far greater than that of PTFE filter material at the wind velocity of 0.05 m/s. In addition, it was found that rGO filter media also had certain antibacterial and bacteriostatic properties. This study provides a reference for the selection of air purifiers and improvement of rGO filter material performance in the post-pandemic era, which also provides a new idea for the subsequent research of composite filter material.
-
Key words:
- air filtration /
- rGO /
- PTFE /
- filtration properties /
- antibacterial properties
-
[1] CHOW J C, WATSON J G, MAUDERLY J L, et al.Health effects of fine particulate air pollution:lines that connect[J].Air Waste Manag.Assoc, 2006, 56(6):709-742. [2] MARTINS N R, GUILHERME C.Impact of PM2.5 in indoor urban environments:a review[J].Sustainable Cities and Society, 2018, 42:259-275. [3] 樊越胜,谢伟,张鑫,等.住宅建筑室内PM2.5污染特征与控制[J].环境工程,2018,36(7):93-97,45. [4] 郭二宝,张一飞,胡浩威,等.建筑室内健康环境中不同过滤单元净化PM2.5特性[J].环境工程,2022,40(4):64-70. [5] 殷平.疫情下的风机盘管空气净化技术研究[J].暖通空调,2021,51(11):6-12. [6] 钱幺, 吴波伟, 钱晓明.驻极体纤维过滤材料研究进展[J].化工新型材料, 2021, 49(6):42-46. [7] ABDOLGHADER P, BROCHOT C, HAGHIGHAT F, et al.Airborne nanoparticles filtration performance of fibrous media:a review[J].Science & Technology for the Built Environment, 2018,24(6):648-672. [8] ZHU S, XU Y K, HUANG C, et al.Triboelectric effect of polytetrafluoroethylene fibers to improve the filtration performance of air-purified materials[J].Journal of Engineered Fibers and Fabrics, 2018, 13(1):442-450. [9] 陈梦艳,仲兆祥,邢卫红.石墨烯功能化纳米纤维空气净化材料研究进展[J].南京工业大学学报(自然科学版),2021,43(4):411-419. [10] 张琳娇.石墨烯使用中存在的问题及其发展趋势[J].中国高新科技, 2021(18):101-102. [11] 邹卫武, 顾宝珊, 孙世清,等.石墨烯及其复合材料在空气净化领域的应用研究进展[J].炭素技术, 2020,9(1):6-11. [12] YE X L, FENG J, ZHANG J X, et al.Controlled release and long-term antibacterial activity of reduced graphene oxide/quaternary ammonium salt nanocomposites prepared by non-covalent modification[J].Colloids and Surfaces B:Biointerfaces, 2017, 149:322-329. [13] 侯若梦,贾瑛,黄远征,等.石墨烯复合材料在空气净化中的应用研究进展[J].材料导报,2020,34(增刊2):1104-1111,1137. [14] 陈淑花, 张恒, 张晶,等.聚乙烯醇/壳聚糖/壳聚糖-g-氧化石墨烯复合膜的制备[J].塑料工业, 2022, 50(2):32-38. [15] 中华人民共和国住房和城乡建设部.空气过滤器:GB/T 14295-2019[S].北京:中国标准出版社,2019. [16] AL-HARBI M, ALHAJRI I, WHALEN J K.Characteristics and health risk assessment of heavy metal contamination from dust collected on household HVAC air filters[J].Chemosphere, 2021, 277(115054):130276-130276. [17] 中华人民共和国住房和城乡建设部.高效空气过滤器性能试验方法效率和阻力:GB/T 6165-2021[S].北京:中国标准出版社,2015. [18] 贾雪莹,王騊.TiO2纳米棒复合织物的制备及其光催化和抗菌性能[J].现代纺织技术,2022,30(3):136-142. [19] 马欢.建筑环境低阻高效过滤材料净化PM2.5特性模型及应用研究[D].上海:东华大学, 2016. [20] 何瑾.居住建筑室内空气微细颗粒物净化用过滤材料的性能试验研究[D].上海:东华大学,2012. [21] 闫雪,刘兴成,沈恒根.含尘烟气净化用滤料性能测试与分析[J].环境工程,2018,36(8):92-97,123. [22] 谭亮亮.建筑环境空气过滤微细颗粒物技术的试验研究[D].上海:东华大学, 2006. [23] HUNG C H, LEUNG W F.Filtration of nano-aerosol using nanofiber filter under low Peclet number and transitional flow regime[J].Separation and Purification Technology, 2011, 79(1):34-42. [24] 刘朝军,刘俊杰,丁伊可,等.高效空气过滤用PTFE膜材料的结构和性能[J].化工进展,2022,41(8):4367-4374. [25] MIKHEEV A Y, SHLYAPNIKOV Y M, KANEV I L, et al.Filtering and optical properties of free standing electrospun nanomats from nylon-4,6[J].European Polymer Journal, 2016, 75:317-328. [26] 王岩,张涛,陈宜华,等.新型微孔膜过滤材料的制备与除尘性能测试[J].中国粉体技术,2022,28(1):43-51. [27] KASHIF J, ANDRES K, MIHKEL V, et al.A method for producing conductive graphene biopolymer nanofibrous fabrics by exploitation of an ionic liquid dispersant in electrospinning[J].Carbon, 2018, 140:148-156. [28] YIN J, BAI Y, LU J, et al.Enhanced mechanical performances and high-conductivity of rGO/PEDOT:PSS/PVA composite fiber films via electrospinning strategy[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 643:128791. [29] 刘朝军,刘俊杰,丁伊可,等.空气过滤用高容尘膨体聚四氟乙烯复合材料的制备及其性能[J].纺织学报,2021,42(5):31-37. [30] CAO G H, YAN J H, NING X X, et al.Antibacterial and antibiofilm properties of graphene and its derivatives[J].Colloids Surf B Biointerfaces, 2021,200:111588. [31] HAN W, WU Z N, LI Y, et al.graphene family nanomaterials (gfns)-promising materials for antimicrobial coating and film:a review[J].Chemical Engineering Journal, 2019, 358:1022-1037.
点击查看大图
计量
- 文章访问数: 58
- HTML全文浏览量: 3
- PDF下载量: 2
- 被引次数: 0