RESEARCH OF SPOILER IN THE CARTRIDGE DUST-COLLECTOR BASED ON NUMERICAL SIMULATION AND ORTHOGONAL EXPERIMENT
-
摘要: 为改善上进气卧式滤筒除尘器靠近进气口处滤纸易受损失效的问题,采用进口处增设导流板的方式,选取导流板板宽b、安装倾角β和距离花板安装位置x 3个因素作为因子,并考虑其彼此间的一阶交互作用,选取综合流量不均系数$\overline {{K_\xi }} $、除尘器静压压降ΔP、灰斗颗粒捕获率η作为导流板性能的评价参数,设计了3因素3水平正交试验进行CFD数值模拟,以确定导流板结构参数和安装参数的最佳匹配方案。对试验数据进行方差分析、单因素作用分析和交互作用分析,选择灰斗颗粒捕获率较优、压降较小的参数匹配方案,即b=120 mm、β=60°、x=140 mm。添加导流板后,除尘器ΔP仍在合适范围内,$\overline {{K_\xi }} $降低了11.5%,η提高了19.3%,滤筒处理气量均匀性得到改善,颗粒初分离效果有所提高,有利于延长滤筒的使用寿命。Abstract: By adding a spoiler at the inlet, the problem that the filter paper near the inlet of the upper intake horizontal cartridge dust-collector was easily damaged and invalid, got improved. To determine the best matching scheme of the structural and installation parameters of the spoiler, an orthogonal experiment with three factors and three levels was designed to conduct a CFD numerical simulation. In this experiment, the width of the spoiler b, the installation angle β and the distance from the installation position of the flower plate x, were selected as the factors, and the first order interaction between them was also taken into account. The performance of the spoiler was evaluated by the comprehensive flow distribution coefficient Δ$\overline {{K_\xi }} $, static pressure drop ΔP and ash-hopper particle capture rate η. After variance analysis, single factor analysis and interaction analysis of the experiment result, the parameter matching scheme with better ash-hopper particle capture rate and smaller pressure drop was selected, that was, b=120 mm, β=60° and x=140 mm. With the spoiler, ΔP was still within the appropriate range, Δ$\overline {{K_\xi }} $ decreased by 11.5% and η increased by 19.3%, indicating that the flow uniformity of the filter cartridge and the initial separation effect of particles were improved, which was good for extending the life of filter cartridges.
-
Key words:
- cartridge dust-collector /
- CFD /
- spoiler /
- interaction /
- orthogonal experiment
-
[1] LIN L Y, LIU T N, YUAN N, et al.Study on the influence of venturi on the cleaning performance of elliptical filter cartridge[J].Powder Technology, 2021, 377:139-148. [2] 焦伟俊,谭志洪,熊桂龙,等.侧进风袋式除尘器分风屏组合优化设计[J].机械设计与制造,2020(2):113-116,120. [3] BOUCHARD D, ZHANG W, CHANG X J.A rapid screening technique for estimating nanoparticle transport in porous media[J].Water Research, 2013, 47(12):4086-4094. [4] 张珈旗,董忠红.基于流场特性数值模拟的袋式除尘器关键结构设计研究综述[J].中国环境科学,2022,42(6):2530-2540. [5] 张智雄,李彩亭,李珊红,等.侧进气卧式滤筒除尘器结构改进的数值模拟[J].环境工程学报,2021,15(11):3581-3588. [6] 刘威,仲兆平,刘瑾,等.基于CFD的袋式除尘器流场优化及漏袋模拟[J].环境工程,2022,40(11):84-91,142. [7] 袁娜,林龙沅,刘侹楠.卧式滤筒除尘器的气流组织模拟研究[J].中国安全生产科学技术,2019,15(7):173-178. [8] 李勇,宋欢,刘伟冬,等.滤筒除尘器不同进出口夹角对气流分布的影响[J].环境工程学报,2016,10(11):6593-6597. [9] GAO D H, ZHOU G, LIU R L, et al.CFD investigation on gas-solid two-phase flow of dust removal characteristics for cartridge filter:a case study[J].Environmental Science and Pollution Research International, 2020, 28(11):13243-13263. [10] 乐文毅,段超龙,谢冬明.组合袋式除尘器的内部流场模拟[J].环境工程,2020,38(5):120-125,95. [11] GUO B Y,HOU Q F,YU A B,et al.Numerical modelling of the gas flow through perforated plates[J].Chemical Engineering Research and Design,2013,91(3):403-408. [12] 林莉君,周露.脉冲滤筒除尘器对超细粉体净化的实验研究[J].中国安全生产科学技术,2012,8(4):44-49. [13] 王永震.滤筒除尘器的研究与优化[D].青岛:山东科技大学,2020. [14] 姚盼,袁艳平,孙亮亮,等.基于交互正交试验的热水系统太阳能保证率影响因素研究[J].太阳能学报,2017,38(2):400-408. [15] 高传昌,黄丹,马建娇,等.喷嘴几何参数对自激吸气脉冲射流性能影响的正交试验[J].排灌机械工程学报,2016,34(6):525-531. [16] 董阳昊,梁珍,沈恒根.上进风内滤式袋式除尘器的流场优化分析[J].东华大学学报(自然科学版),2021,47(3):112-119. [17] 潘伶,杨燕珍.袋式除尘器内部流场的数值模拟[J].环境工程学报,2012,6(8):2750-2754. [18] 中华人民共和国工业和信息化部.滤筒式除尘器:JB/T 10341-2014[S].北京:机械工业出版社,2015. [19] 毛锐,刘根凡,邓翔,等.布袋除尘器结构改进的数值模拟研究[J].环境工程,2015,33(3):77-81,91.
点击查看大图
计量
- 文章访问数: 85
- HTML全文浏览量: 12
- PDF下载量: 5
- 被引次数: 0