A NEW RISK ASSESSMENT METHOD FOR HEAVY METAL ORGANIC COMPOUND POLLUTED SOIL
-
摘要: 传统指数风险评价方法将重金属的总量作为确定污染土环境风险评价对象,存在低估重金属污染程度的不足。针对此,提出了一种以重金属有效态为评价对象的改进型潜在生态风险评价方法,该方法可同时考虑数据离散性和生物有效性,并且量化了挥发性有机物的污染风险。以盐城市大丰区某化工企业区域污染土对研究对象,对比分析了传统指数风险评价方法和改进的潜在生态风险评价方法对污染程度评价结果。结果表明:改进的潜在生态评价方法切实可行,该方法的评价结果显示Cr、Cu元素均呈现四级生态危害程度,Pb元素呈现强生态危害程度,而Co元素和VOCs的潜在生态风险系数Eri达到极强,该污染土的潜在生态风险指数RI为4613.43,为极强生态危害程度。
-
关键词:
- 改进的潜在生态风险评价方法 /
- 重金属有效态 /
- 重金属-有机物复合污染土 /
- 可靠性验证 /
- 风险评价
Abstract: The traditional index risk assessment method takes the total amount of heavy metals as the object of determining the environmental risk assessment of contaminated soil, which may underestimate the pollution degree of heavy metals. In this paper, an improved potential ecological risk assessment method based on the available state of heavy metals is proposed. This method can consider both the data discreteness and biological availability, and quantify the pollution risk of volatile organic compounds. Aiming at the regional polluted soil of a chemical enterprise in Dafeng District, Yancheng, the traditional index risk assessment method and the improved potential ecological risk assessment method were compared and analyzed. The results showed that the improved potential ecological assessment method was feasible. The assessment results of the improved method showed that Cr and Cu elements presented a forth level ecological hazard degree, Pb element presented a strong ecological hazard degree, while the potential ecological risk coefficient of Co elements and VOCs reached a very strong ecological hazard degree. The potential ecological risk index RI of the contaminated soil was 4613.43, a very strong ecological hazard degree. -
[1] 陈江军, 刘波, 蔡烈刚, 等.基于多种方法的土壤重金属污染风险评价对比:以江汉平原典型场区为例[J].水文地质工程地质, 2018,45(6):164-172. [2] 范拴喜, 甘卓亭, 李美娟, 等.土壤重金属污染评价方法进展[J].中国农学通报, 2010,26(17):310-315. [3] 郭欣, 姚苹, 杜焰玲, 等.典型土地利用方式下土壤重金属污染物分布特征与源解析:以成都平原干溪河流域为例[J].环境工程, 2019,37(1):1-5. [4] HAKANSON L.An ecological risk index for aquatic pollution control.a sedimentological approach[J].Water Research, 1980,14(8):975-1001. [5] 王大鹏, 王诚煜, 于成广, 等.葫芦岛东北部土壤重金属分布特征及来源解析[J].中国环境科学.2021,41(11):5227-5236. [6] 窦韦强, 安毅, 秦莉, 等.农田土壤重金属垂直分布迁移特征及生态风险评价[J].环境工程, 2021,39(2):166-172. [7] 刘清, 王子健, 汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展[J].环境科学, 1996,17(1):89-92. [8] GHAYORANEH M, QISHLAQI A.Concentration, distribution and speciation of toxic metals in soils along a transect around a Zn/Pb smelter in the northwest of Iran[J].Journal of Geochemical Exploration, 2017,180:1-14. [9] GOLDBERG E.Determination of opal in marine[J].Journal of Marine Research, 1958,17:178-182. [10] LI H X, JI H B, CUI X L, et al.Kinetics, thermodynamics, and equilibrium of As(Ⅲ), Cd(Ⅱ), Cu(Ⅱ) and Pb(Ⅱ) adsorption using porous chitosan bead-supported MnFe2O4 nanoparticles[J].International Journal of Mining Science and Technology, 2021,31(6):1107-1115. [11] 李国臣, 李泽琴, 高岚.土壤重金属生物可利用性的研究进展[J].土壤通报, 2012,43(6):1527-1531. [12] 孙艺伦, 张婧然, 朱丹丹, 等.柠檬酸对MFC修复土壤的促进作用[J].中南大学学报(自然科学版), 2021,52(10):3397-3404. [13] LI G H, LI M, ZHANG X, et al.Hydrothermal synthesis of zeolites-calcium silicate hydrate composite from coal fly ash with co-activation of Ca(OH)2-NaOH for aqueous heavy metals removal[J].International Journal of Mining Science and Technology, 2022,32(3):563-573. [14] 唐巾尧, 王云燕, 徐慧, 等.铜冶炼多源固废资源环境属性的解析[J].中南大学学报(自然科学版), 2022,53(10):3811-3826. [15] 任丽敏, 何江, 吕昌伟, 等.达里诺尔湖生物有效态重金属的形态分布及生态风险评价[J].农业环境科学学报, 2013,32(2):338-346. [16] 杨梦丽, 叶明亮, 马友华, 等.基于重金属有效态的农田土壤重金属污染评价研究[J].环境监测管理与技术, 2019,31(1):10-13,38. [17] 李燕, 魏雨露, 夏龙飞.便携式X荧光光谱仪在场地重金属污染调查中的应用研究:《环境工程》2019年全国学术年会[C]//中国北京, 2019. [18] 冉景, 王德建, 王灿, 等.便携式X射线荧光光谱法与原子吸收/原子荧光法测定土壤重金属的对比研究[J].光谱学与光谱分析, 2014,34(11):3113-3118. [19] 廖启林, 刘聪, 许艳, 等.江苏省土壤元素地球化学基准值[J].中国地质, 2011,38(5):1363-1378. [20] 窦智勇, 程建华, 周平, 等.基于总量及有效态的铜陵矿区农田土壤重金属生态风险评价[J].环境污染与防治, 2015,37(11):6-10. [21] 高怀友, 师荣光, 赵玉杰.不同土壤中Zn有效态含量与全量关系的统计研究[J].环境科学学报, 2006,26(8):1400-1403. [22] GAO H Y, SHI R G, ZHAO Y J.Statistical relationship between bio-available Zn and total Zn concentration in soil under non-continous spatio-temporal condition[J].Acta Scientiae Circumstantiae, 2006,26(8):1400-1403. [23] 赵小学, 姚东平, 成永霞, 等.铅冶炼区土壤重金属总量和有效态含量的函数分析[J].中国环境监测, 2017,33(1):68-74. [24] 丁琮, 陈志良, 李核, 等.长株潭地区农业土壤重金属全量与有效态含量的相关分析[J].生态环境学报, 2012,21(12):2002-2006. [25] SINGH K P, MOHAN D, SINGH V K, et al.Studies on distribution and fractionation of heavy metals in Gomti river sediments:a tributary of the Ganges, India[J].Journal of Hydrology, 2005,312(1/2/3/4):14-27. [26] 范明毅, 杨皓, 黄先飞, 等.典型山区燃煤型电厂周边土壤重金属形态特征及污染评价[J].中国环境科学, 2016,36(8):2425-2436. [27] 宋伟, 陈百明, 刘琳.中国耕地土壤重金属污染概况[J].水土保持研究, 2013,20(2):293-298. [28] OLSSON M.Mercury, DDT, and PCB in aquatic test organisms:baseline and monitoring studies, field studies on biomagnification, metabolism, and effects of some bioaccumulating substances harmful to the Swedish environment[M].Swedish Museum of Natural History, Section for Vertebrate Zoology, 1977:139. [29] 徐争启, 倪师军, 庹先国, 等.潜在生态危害指数法评价中重金属毒性系数计算[J].环境科学与技术.2008,31(2):112-115. [30] 丰土根, 郑柳钦, 张箭, 等.废弃农药厂重金属污染土风险评价及焙烧修复效果研究[J].环境工程, 2022,40(2):132-138. [31] 孙彤, 纪艺凝, 李可, 等.弱碱性玉米地土壤重金属赋存形态及生态风险评价[J].环境化学, 2020,39(9):2469-2478. [32] 李军, 刘云国, 许中坚.湘江长株潭段底泥重金属存在形态及生物有效性[J].湖南科技大学学报(自然科学版), 2009,24(1):116-121. [33] 聂海峰, 赵传冬, 刘应汉, 等.松花江流域河流沉积物中多氯联苯的分布、来源及风险评价[J].环境科学, 2012,33(10):3434-3442. [34] ZHU H N, YUAN X Z, ZENG G M, et al.Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index[J].Transactions of Nonferrous Metals Society of China, 2012,22(6):1470-1477.
点击查看大图
计量
- 文章访问数: 114
- HTML全文浏览量: 9
- PDF下载量: 4
- 被引次数: 0