CSCD来源期刊
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳基材料与挥发性有机污染物相互作用行为和机制研究进展

梁妮 刘凯 孔颖 起兆雄 陈全

梁妮, 刘凯, 孔颖, 起兆雄, 陈全. 碳基材料与挥发性有机污染物相互作用行为和机制研究进展[J]. 环境工程, 2023, 41(7): 260-270. doi: 10.13205/j.hjgc.202307035
引用本文: 梁妮, 刘凯, 孔颖, 起兆雄, 陈全. 碳基材料与挥发性有机污染物相互作用行为和机制研究进展[J]. 环境工程, 2023, 41(7): 260-270. doi: 10.13205/j.hjgc.202307035
LIANG Ni, LIU Kai, KONG Ying, QI Zhaoxiong, CHEN Quan. RESEARCH PROGRESS ON INTERACTION BEHAVIORS AND MECHANISM OF CARBON-BASED MATERIALS AND VOLATILE ORGANIC COMPOUNDS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 260-270. doi: 10.13205/j.hjgc.202307035
Citation: LIANG Ni, LIU Kai, KONG Ying, QI Zhaoxiong, CHEN Quan. RESEARCH PROGRESS ON INTERACTION BEHAVIORS AND MECHANISM OF CARBON-BASED MATERIALS AND VOLATILE ORGANIC COMPOUNDS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 260-270. doi: 10.13205/j.hjgc.202307035

碳基材料与挥发性有机污染物相互作用行为和机制研究进展

doi: 10.13205/j.hjgc.202307035
基金项目: 

国家自然科学基金地区项目(42167055,42277399)

详细信息
    作者简介:

    梁妮(1979-),女,博士,讲师,主要研究方向为环境土壤科学。liangnikust@163.com

    通讯作者:

    陈全(1989-),男,博士,副教授,主要研究方向为污染物环境行为及归趋。18814122937@163.com

RESEARCH PROGRESS ON INTERACTION BEHAVIORS AND MECHANISM OF CARBON-BASED MATERIALS AND VOLATILE ORGANIC COMPOUNDS

  • 摘要: 挥发性有机物(VOCs)是常见的污染物,可通过工农业生产活动进入环境,并对生态环境和人类健康构成潜在威胁。碳基材料具有多种优点且极具工程应用潜力,被广泛应用于VOCs污染防治的研究中。因此明确碳基材料与VOCs间的作用机制有着切实的环境意义。首先综述了VOCs的主要来源、危害。并以碳基材料为主要关注对象,论述了各种改性或未改性碳基材料对VOCs的吸附和降解效率;详细介绍了吸附和降解过程中两者间可能发生的作用机制;然后从碳基材料和VOCs本身的物理化学性质以及环境因素角度出发,探讨碳基材料吸附或降解VOCs过程中的影响因素;最后阐明了两者之间的关联和区别,总结出判定去除VOCs过程中相互作用的方法。基于此,碳基材料在VOCs治理过程中起到重要作用,具有重要的环境意义。研究成果可为碳基材料的结构调控方向、应用性能评价及其在VOCs吸附或降解中的应用提供参考。
  • [1] GUAN Y N, WANG L, WANG S T, et al.Temporal variations and source apportionment of volatile organic compounds at an urban site in Shijiazhuang, China[J].Journal of Environmental Sciences, 2020, 97:25-34.
    [2] RAJABI H, HADI MOSLEH M, MANDAL P, et al.Emissions of volatile organic compounds from crude oil processing-global emission inventory and environmental release[J].Science of The Total Environment, 2020, 727:138654.
    [3] ZHANG G, MU Y J, LIU J F, et al.Seasonal and diurnal variations of atmospheric peroxyacetyl nitrate, peroxypropionyl nitrate, and carbon tetrachloride in Beijing[J].Journal of Environmental Sciences, 2014, 26(1):65-74.
    [4] TONG R P, MA X F, ZHANG Y W, et al.Source analysis and health risk-assessment of ambient volatile organic compounds in automobile manufacturing processes[J].Human and Ecological Risk Assessment:An International Journal, 2018, 26(2):359-383.
    [5] 陈宗耀,伦小秀,唐贵刚,等.中国人为源VOCs排放因子库研究[J].环境工程,2018,36(9):68-73.
    [6] KIM Y M, HARRD S, HARRISON R M.Concentrations and sources of VOCs in urban domestic and public microenvironments[J].Environmental Science & Technology, 2001, 35(6):997-1004.
    [7] ZHAO X, MA H, LU J, et al.Characteristics and source apportionment of volatile organic compounds during the remediation of contaminated sites in Zhenjiang, China[J].International Journal of Environmental Science and Technology, 2021, 18:2271-2282.
    [8] DZIURA E, MOLSEED A, KRAMLICH J.Thermal destruction behavior of selected waste compounds under short-time, high quench rate conditions[J].Environmental Engineering Science, 1997, 14:33-42.
    [9] BORINELLI J B, BLOM J, PORTILLO-ESTRADA M, et al.VOC emission analysis of Bitumen using Proton-transfer reaction time-of-flight mass spectrometry[J].Materials (Basel), 2020, 13(17):3569.
    [10] SQUILLACE P J, MORAN M J.Factors associated with sources, transport, and fate of volatile organic compounds and their mixtures in aquifers of the United States[J].Environmental Science & Technology, 2007, 41(7):2123-2130.
    [11] 刘佳泓,刘胜楠,刘茂辉,等.天津市环城某区小尺度VOCs排放清单及特征[J].环境工程,2020,38(8):188-194

    ,200.
    [12] DENG C B, TIAN Y, LI X P, et al.Volatile organic compounds in Yongjiang River and inland surface waters of Nanning[J].Environmental Science & Technology,2010, 33(1):119-123.
    [13] YU S, LEE P K, YUN S T, et al.Comparison of volatile organic compounds in stormwater and groundwater in Seoul metropolitan city, South Korea[J].Environmental Earth Sciences, 2017, 76(9):1-17.
    [14] COLOMB A, YASSAA N, WILLIAMS J, et al.Screening volatile organic compounds (VOCs) emissions from five marine phytoplankton species by head space gas chromatography/mass spectrometry (HS-GC/MS)[J].Journal of Environmental Monitoring, 2008, 10(3):325-330.
    [15] MÄKI M, AALTONEN H, HEINONSALO J, et al.Boreal forest soil is a significant and diverse source of volatile organic compounds[J].Plant and Soil, 2019, 441(1/2):89-110.
    [16] ABIS L, LOUBET B, CIURARU R, et al.Reduced microbial diversity induces larger volatile organic compound emissions from soils[J].Scientific Reports, 2020, 10(1):6104.
    [17] INSAM H, SEEWALD M S A.Volatile organic compounds (VOCs) in soils[J].Biology and Fertility of Soils, 2010, 46(3):199-213.
    [18] LI G, CHENG Y F, KUHN U, et al.Physicochemical uptake and release of volatile organic compounds by soil in coated-wall flow tube experiments with ambient air[J].Atmospheric Chemistry and Physics, 2019, 19:2209-2232.
    [19] MA J M, FAN S F, SUN L, et al.Rapid analysis of fifteen sulfonamide residues in pork and fish samples by automated on-line solid phase extraction coupled to liquid chromatography-tandem mass spectrometry[J].Food Science and Human Wellness, 2020, 9(4):363-369.
    [20] HONG S H, SHIN D C, LEE Y J, et al.Health risk assessment of volatile organic compounds in urban areas[J].Human and Ecological Risk Assessment:An International Journal, 2017, 23(6):1454-1465.
    [21] MRAMBA A S, NDIBEWU P P, SIBALI L L, et al.A review on electrochemical degradation and biopolymer adsorption treatments for toxic compounds in pharmaceutical effluents[J].Electroanalysis, 2020, 32(12):2615-2634.
    [22] ST HELEN G, LIAKONI E, NARDONE N, et al.Comparison of systemic exposure to toxic and/or carcinogenic volatile organic compounds (VOC) during vaping, smoking, and abstention[J].Cancer Prevention Research (Phila), 2020, 13(2):153-162.
    [23] 张俊香,黄学敏,曹利,等.负载Cu改性活性炭吸附VOCs性能的研究[J].环境工程,2015,33(1):95-99.
    [24] LIOTTA L F.Catalytic oxidation of volatile organic compounds on supported noble metals[J].Environmental,2010, 100(3/4):403-412.
    [25] JUANG D F, LEE C H, CHEN W C, et al.Do the VOCs that evaporate from a heavily polluted river threaten the health of riparian residents?[J].Science of The Total Environment, 2010, 408(20):4524-4531.
    [26] NG S J, SIMS N F, TAY E X Y, et al.Removal of volatile organic compounds (VOCs) from water using mixtures of olive oil, lecithin, and vitamin E as phase transfer agents[J].Journal of Water Process Engineering, 2017, 18:58-64.
    [27] MOISAN K, CORDOVEZ V, VAN DE ZANDE E M, et al.Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects[J].Oecologia, 2019, 190(3):589-604.
    [28] TANG Z, ZHANG J, YU J L, et al.Allelopathic effects of volatile organic compounds from Eucalyptus grandis rhizosphere soil on Eisenia fetida assessed using avoidance bioassays, enzyme activity, and comet assays[J].Chemosphere, 2017, 173:307-317.
    [29] SHEN K, CHEN X D, CHEN J Y, et al.Development of MOF-derived carbon-based nanomaterials for efficient catalysis[J].Acs Catalysis, 2016, 6(9):5887-5903.
    [30] HU C G, DAI L M.Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution[J].Advanced Materials, 2017, 29(9):1604942.
    [31] CHO E A, YEON S H, SHIN K H, et al.Electrochemical performance of pitch-based activated carbon fibers for anode electrode in supercapacitors[J].Journal of Nanoscience and Nanotechnology, 2016, 16(10):10548-10551.
    [32] 冯宇, 刘平, 张立.VOCs高效吸附材料研究进展[J].当代化工, 2022, 51(3):671-676.
    [33] XIANG W, ZHANG X Y, CHEN K Q, et al.Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs)[J].Chemical Engineering Journal, 2020, 385:123842.
    [34] KIM J M, KIM J H, LEE C Y, et al.Toluene and acetaldehyde removal from air on to graphene-based adsorbents with microsized pores[J].Journal of Hazardous Materials, 2018, 344:458-465.
    [35] KUMAR A, SINGH E, KHAPRE A, et al.Sorption of volatile organic compounds on non-activated biochar[J].Bioresource Technology, 2020, 297:122469.
    [36] 罗瑞, 陈旺, 张进, 等.碱处理和掺氮耦合改性对活性炭纤维吸附甲醛性能的影响[J].环境工程学报, 2018, 12(10):2791-2796.
    [37] JAYAAWARDHANA Y, GUNATILAKE S R, MAHATANTILA K, et al.Sorptive removal of toluene and m-xylene by municipal solid waste biochar:simultaneous municipal solid waste management and remediation of volatile organic compounds[J].Journal of Environmental Management, 2019, 238:323-330.
    [38] ZHOU X X, MOGHADDAM T B, CHEN M, et al.Biochar removes volatile organic compounds generated from asphalt[J].Science of the Total Environment, 2020, 745:141096.
    [39] 孙天杭, 沈晓芳, 张占恩, 等.邻苯二甲酸酯及邻苯二甲酸在碳管上的吸附[J].中国环境科学, 2021, 41(6):2717-2724.
    [40] CHEN Y T, HUANG Y P, WANG C, et al.Comprehending adsorption of methylethylketone and toluene and microwave regeneration effectiveness for beaded activated carbon derived from recycled waste bamboo tar[J].Journal of the Air & Waste Management Association, 2020, 70(6):616-628.
    [41] BEDANE A H, GUO T X, EIĆ M, et al.Adsorption of volatile organic compounds on peanut shell activated carbon[J].The Canadian Journal of Chemical Engineering, 2019, 97(1):238-246.
    [42] LI B, MI C W.Molecular perspective on charge-tunable adsorption of volatile organic compounds on carbon nanotubes[J].Physical Chemistry Chemical Physics, 2021, 23(4):2972-2980.
    [43] MOHAMMED J, NASRI N S, ZAINI M A A, et al.Adsorption of benzene and toluene onto KOH activated coconut shell based carbon treated with NH3[J].International Biodeterioration & Biodegradation, 2015, 102:245-255.
    [44] 白瑞, 高雯雯, 卢翠英, 等.还原石墨烯负载Fe3O4催化剂的制备及催化降解苯酚[J].化工科技, 2021, 29(2):6-9.
    [45] 岳先会, 金鑫, 谷成.碳材料促进硝基/卤素取代类有机污染物还原降解的研究进展[J].材料导报, 2020, 34(3):34-42.
    [46] 张露, 张求慧, 张文博.木材液化物活性碳纤维苯酚吸附性能研究[J].化工新型材料, 2015, 43(8):169-171

    ,180.
    [47] JUNKAEW A, RUNGNIM C, KUNASETH M, et al.Metal cluster-deposited graphene as an adsorptive material for m-xylene[J].New Journal of Chemistry, 2015, 39(12):9650-9658.
    [48] KIM K J, KANG C S, YOU Y J, et al.Adsorption-desorption characteristics of VOCs over impregnated activated carbons[J].Catalysis Today, 2006, 111(3/4):223-228.
    [49] LI M S, WANG R, KUO D T F, et al.Linear free energy relationships for the adsorption of volatile organic compounds onto multiwalled carbon nanotubes at different relative humidities:comparison with organoclays and activated carbon[J].Environmental Science:Processes & Impacts, 2017, 19(3):276-287.
    [50] 张金龙, 李霄云, 包万鸿, 等.邻苯二甲酸和苯甲酸在功能化碳纳米管上的吸附行为[J].中国环境科学, 2018, 38(11):4106-4113.
    [51] OU Y H, CHANG Y J, LIN F Y, et al.Competitive sorption of bisphenol A and phenol in soils and the contribution of black carbon[J].Ecological Engineering, 2016, 92:270-276.
    [52] SANTOS-CLOTAS E, CABRERA-CODONY A, RUIZ B, et al.Sewage biogas efficient purification by means of lignocellulosic waste-based activated carbons[J].Bioresource Technology, 2019, 275:207-215.
    [53] ZHANG W X, CHENG H R, NIU Q, et al.Microbial targeted degradation pretreatment:a novel approach to preparation of activated carbon with specific hierarchical porous structures, high surface areas, and satisfactory toluene adsorption performance[J].Environmental Science & Technology, 2019, 53(13):7632-7640.
    [54] 安亚雄, 付强, 刘冰, 等.不同孔径活性炭吸附挥发性有机物的分子模拟[J].化工进展, 2019, 38(11):5136-5141.
    [55] 公绪金,董玉奇,李伟光,等.污泥基活性炭-甲醇工质对吸附/解吸特性[J].中国环境科学, 2021, 41(8):3626-3634.
    [56] 刘晓敏,邓先伦,朱光真,等.木质颗粒活性炭的孔结构对丁烷吸附性能的影响研究[J].林产化学与工业, 2012, 32(2):140-144.
    [57] 蒋剑春,王志高,邓先伦,等.丁烷吸附用颗粒活性炭的制备研究[J].林产化学与工业, 2005,25(3):5-8.
    [58] SHEN X H, OU R, LU Y T, et al.Record-high capture of volatile benzene and toluene enabled by activator implant-optimized banana peel-derived engineering carbonaceous adsorbents[J].Environment International, 2020, 143:105774.
    [59] FANG R M, HUANG H B, HUANG W J, et al.Influence of peracetic acid modification on the physicochemical properties of activated carbon and its performance in the ozone-catalytic oxidation of gaseous benzene[J].Applied Surface Science, 2017, 420:905-910.
    [60] ZHUANG Z C, WANG L, TANG J C.Efficient removal of volatile organic compound by ball-milled biochars from different preparing conditions[J].Journal of Hazardous Materials, 2021, 406:124676.
    [61] LIM S T, KIM J H, LEE C Y, et al.Mesoporous graphene adsorbents for the removal of toluene and xylene at various concentrations and its reusability[J].Scientific reports, 2019, 9(1):1-12.
    [62] YUE Z R, VAKILI A, WANG J W.Activated carbon fibers from meltblown isotropic pitch fiber webs for vapor phase adsorption of volatile organic compounds[J].Chemical Engineering Journal, 2017, 330:183-190.
    [63] THEONESTE N, KIM M H, SOLIS K L, et al.KOH activated pine tree needle leaves biochar as effective sorbent for VOCs in water[J].Membrane and Water Treatment, 2018, 9(5):293-300.
    [64] GUO X C, LI X Y, GAN G Q, et al.Functionalized activated carbon for competing adsorption of volatile organic compounds and water[J].ACS Applied Materials & Interfaces, 2021, 13(47):56510-56518.
    [65] BAUR G B, BESWICK O, SPRING J, et al.Activated carbon fibers for efficient VOC removal from diluted streams:the role of surface functionalities[J].Adsorption, 2015, 21(4):255-264.
    [66] ZHANG X Y, XIANG W, MIAO X D, et al.Microwave biochars produced with activated carbon catalyst:characterization and sorption of volatile organic compounds (VOCs)[J].Science of the Total Environment, 2022, 827:153996.
    [67] ZHANG X Y, MIAO X D, XIANG W, et al.Ball milling biochar with ammonia hydroxide or hydrogen peroxide enhances its adsorption of phenyl volatile organic compounds (VOCs)[J].Journal of Hazardous Materials, 2021, 403:123540.
    [68] 贾李娟, 沈祥斌, 杨茗璇, 等.石墨烯和超高交联树脂对苯和对二甲苯的动态吸附特性[J].安全与环境学报, 2022,22(6):3483-3492.
    [69] 李世杰, 黄慧娟, 尚莉莉, 等.活性炭净化室内甲醛的研究进展[J].材料导报, 2021, 35(增刊2):75-80.
    [70] 李琳, 辛智慧, 秦君, 等.氧化硅-石墨烯气凝胶介孔复合材料的合成及其对苯的吸附性能[J].化学通报, 2021, 84(10):1054-1059.
    [71] 杨金杯, 叶银钕, 赖衍斌.石墨烯对4-硝基苯酚的吸附性能研究[J].应用化工, 2021, 50(3):718-723.
    [72] 徐恺, 唐克, 常春, 等.芹菜籽源药渣生物炭制备及对苯酚的吸附性能[J].工业水处理, 2020, 40(6):36-39.
    [73] 桑瑞, 孟宪荣, 许伟, 等.污泥基生物炭活化过硫酸钠降解水中萘的研究[J].现代化工, 2022,42(7):182-187.
    [74] 马楠, 田耀金, 杨广平, 等.改性活性碳纤维电芬顿降解苯酚废水性能研究[J].环境科学, 2014, 35(7):2627-2632.
    [75] KIM M J, KIM K H, KIM Y, et al.Volatile organic compounds (VOCs) removal using ACFs with electroless plating CuO as catalysts[J].Carbon Letters, 2020, 30(6):675-682.
    [76] 余雪, 王亮, 冯丽娟, 等.Au/BiOBr/石墨烯复合物的制备及其苯酚降解光催化性能[J].燃料化学学报, 2016, 44(8):937-942.
    [77] 谭万春, 李芬, 万俊力, 等.活性炭/铁氧化物复合材料催化降解水中的苯酚[J].环境工程学报, 2013, 7(5):1744-1748.
    [78] 冯俊生, 张郓, 王晓红, 等.石墨烯电极电活化过硫酸盐降解含酚废水研究[J].安全与环境学报, 2021, 21(1):404-410.
    [79] 王淑媛, 李济吾, 洪亚军.Ti-Cu-Mn复合物负载石墨烯催化剂制备及其降解二甲苯性能[J].环境科学学报, 2016, 36(7):2375-2381.
    [80] SM S N, MAIYA M P.Photocatalytic degradation of gaseous toluene using self-assembled air filter based on chitosan/activated carbon/TiO2[J].Journal of Environmental Chemical Engineering, 2019, 7(6):103455.
    [81] FENG Q Y, LIU B Y, JI J, et al.Enhanced photo-degradation of gaseous toluene over MnO<em>x/TiO2/activated carbon under a novel microwave discharge electrodeless lamps system[J].Applied Surface Science, 2021, 547:148955.
    [82] 康凯.石墨烯/二氧化钛修饰的光催化基板在工业VOCs降解中的应用研究[J].环境科技, 2021, 34(6):41-44.
    [83] 崔佳丽, 高永华, 高利珍.SDP法制备碳纳米管-TiO2纳米复合光催化剂及降解喹啉[J].新型炭材料, 2016, 31(4):399-406.
    [84] CHENG X, GUO H G, ZHANG Y L, et al.Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes[J].Water Research, 2017, 113:80-88.
    [85] 纪志永, 李鑫钢, 孙津生.炭材料在水污染修复领域的应用研究[J].材料导报, 2006,20(7):84-87.
    [86] 尹媛,生弘杰,王紫泉,等.不同载体材料固定Sphingobium sp.PHE3对溶液中菲的降解研究[J/OL].土壤学报:1-12[2022-10-29

    ].http://gfffg4668e74e3ad24b0ahxo9066p0qfp96fbq.fgfy.kust.cwkeji.cn/kcms/detail/32.1119.P.20220701.0041.002.html.
    [87] SANTOS-CLOTAS E, CABRERA-CODONY A, BOADA E, et al.Efficient removal of siloxanes and volatile organic compounds from sewage biogas by an anoxic biotrickling filter supplemented with activated carbon[J].Bioresource Technology, 2019, 294:122136.
    [88] 孔露露,周启星.生物炭输入土壤对其石油烃微生物降解力的影响[J].环境科学学报, 2016,36(11):4199-4207.
    [89] 凌昊, 孟捷, 陶进国, 等.Ce-ZnO/AC在真空紫外下催化降解对二甲苯废气[J].环境工程学报, 2020, 14(11):3092-3101.
    [90] 孙鹏, 张凯凯, 张玉, 等.向日葵秸秆生物炭强化Fe(Ⅲ)/S2O82-体系降解苯甲酸[J].环境科学, 2020, 41(5):2301-2309.
    [91] 刘伟军, 段平洲, 胡翔, 等.活性炭纤维三维电极电催化降解水中间甲酚:效能及影响因素研究[J].中国环境科学, 2019, 39(1):164-169.
    [92] 李蓉, 肖新颜, 万彩霞.活性炭负载纳米TiO2光催化降解气相丙酮[J].材料导报, 2011, 25(8):68-70

    ,73.
    [93] 刘科.TiO2/石墨烯纳米复合材料的制备及催化降解VOCs研究[J].功能材料, 2021, 52(10):10207-10211.
    [94] 吝美霞, 李法云, 王玮, 等.生物炭负载P掺杂g-C3N4复合光催化剂制备及其对萘光催化降解机制[J].环境科学学报, 2021, 41(8):3200-3210.
    [95] 彭人勇, 刘淑娟, 赵玉美.活性炭纤维负载TiO2光催化降解甲醛的影响因素[J].环境工程学报, 2009, 3(7):1294-1298.
    [96] LIU Z S, PENG Y H, LI W K.Effects of activated carbon fibre-supported metal oxide characteristics on toluene removal[J].Environmental Technology, 2014, 35(12):1499-1507.
  • 加载中
计量
  • 文章访问数:  88
  • HTML全文浏览量:  10
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-25

目录

    /

    返回文章
    返回