RESEARCH PROGRESS ON INTERACTION BEHAVIORS AND MECHANISM OF CARBON-BASED MATERIALS AND VOLATILE ORGANIC COMPOUNDS
-
摘要: 挥发性有机物(VOCs)是常见的污染物,可通过工农业生产活动进入环境,并对生态环境和人类健康构成潜在威胁。碳基材料具有多种优点且极具工程应用潜力,被广泛应用于VOCs污染防治的研究中。因此明确碳基材料与VOCs间的作用机制有着切实的环境意义。首先综述了VOCs的主要来源、危害。并以碳基材料为主要关注对象,论述了各种改性或未改性碳基材料对VOCs的吸附和降解效率;详细介绍了吸附和降解过程中两者间可能发生的作用机制;然后从碳基材料和VOCs本身的物理化学性质以及环境因素角度出发,探讨碳基材料吸附或降解VOCs过程中的影响因素;最后阐明了两者之间的关联和区别,总结出判定去除VOCs过程中相互作用的方法。基于此,碳基材料在VOCs治理过程中起到重要作用,具有重要的环境意义。研究成果可为碳基材料的结构调控方向、应用性能评价及其在VOCs吸附或降解中的应用提供参考。Abstract: Volatile organic compounds (VOCs) are a class of common pollutants. They can enter the environment through industrial and agricultural activities and cause pollution, thus posing a potential threat to the ecological environment and human health. Carbon-based materials are widely used in the research of VOCs pollution prevention and control,due to their advantages and great engineering application potential. Therefore, it is of practical environmental significance to clarify the interaction mechanism between carbon-based materials and VOCs. In this review, the primary sources, hazards and common treatment methods of VOCs were first summarized. Taking carbon-based materials as the primary research object, the adsorption and degradation efficiency of various modified or unmodified carbon-based materials on VOCs were discussed. The possible interaction mechanism between them in the process of adsorption and degradation was described in detail. Then, from the perspective of the physicochemical properties of carbon-based materials and VOCs themselves as well as environmental factors, the factors influencing the adsorption or degradation of VOCs by carbon-based materials were discussed. Finally, the correlation and differences between the two were clarified, and the interaction methods in the process of determining the removal of VOCs were summarized. Based on the in-depth understanding of the efficiency, mechanism and influencing factors in the adsorption and degradation of VOCs by carbon-based materials, this review could provide a deeper understanding of the critical role of carbon-based materials in the VOCs treatment process, which could provide theoretical guidance for the future regulation direction of the structure of carbon-based materials, application performance evaluation and their application in adsorption or degradation of VOCs.
-
Key words:
- adsorption /
- degradation /
- interaction mechanism /
- degradation pathway /
- free radicals
-
[1] GUAN Y N, WANG L, WANG S T, et al.Temporal variations and source apportionment of volatile organic compounds at an urban site in Shijiazhuang, China[J].Journal of Environmental Sciences, 2020, 97:25-34. [2] RAJABI H, HADI MOSLEH M, MANDAL P, et al.Emissions of volatile organic compounds from crude oil processing-global emission inventory and environmental release[J].Science of The Total Environment, 2020, 727:138654. [3] ZHANG G, MU Y J, LIU J F, et al.Seasonal and diurnal variations of atmospheric peroxyacetyl nitrate, peroxypropionyl nitrate, and carbon tetrachloride in Beijing[J].Journal of Environmental Sciences, 2014, 26(1):65-74. [4] TONG R P, MA X F, ZHANG Y W, et al.Source analysis and health risk-assessment of ambient volatile organic compounds in automobile manufacturing processes[J].Human and Ecological Risk Assessment:An International Journal, 2018, 26(2):359-383. [5] 陈宗耀,伦小秀,唐贵刚,等.中国人为源VOCs排放因子库研究[J].环境工程,2018,36(9):68-73. [6] KIM Y M, HARRD S, HARRISON R M.Concentrations and sources of VOCs in urban domestic and public microenvironments[J].Environmental Science & Technology, 2001, 35(6):997-1004. [7] ZHAO X, MA H, LU J, et al.Characteristics and source apportionment of volatile organic compounds during the remediation of contaminated sites in Zhenjiang, China[J].International Journal of Environmental Science and Technology, 2021, 18:2271-2282. [8] DZIURA E, MOLSEED A, KRAMLICH J.Thermal destruction behavior of selected waste compounds under short-time, high quench rate conditions[J].Environmental Engineering Science, 1997, 14:33-42. [9] BORINELLI J B, BLOM J, PORTILLO-ESTRADA M, et al.VOC emission analysis of Bitumen using Proton-transfer reaction time-of-flight mass spectrometry[J].Materials (Basel), 2020, 13(17):3569. [10] SQUILLACE P J, MORAN M J.Factors associated with sources, transport, and fate of volatile organic compounds and their mixtures in aquifers of the United States[J].Environmental Science & Technology, 2007, 41(7):2123-2130. [11] 刘佳泓,刘胜楠,刘茂辉,等.天津市环城某区小尺度VOCs排放清单及特征[J].环境工程,2020,38(8):188-194,200. [12] DENG C B, TIAN Y, LI X P, et al.Volatile organic compounds in Yongjiang River and inland surface waters of Nanning[J].Environmental Science & Technology,2010, 33(1):119-123. [13] YU S, LEE P K, YUN S T, et al.Comparison of volatile organic compounds in stormwater and groundwater in Seoul metropolitan city, South Korea[J].Environmental Earth Sciences, 2017, 76(9):1-17. [14] COLOMB A, YASSAA N, WILLIAMS J, et al.Screening volatile organic compounds (VOCs) emissions from five marine phytoplankton species by head space gas chromatography/mass spectrometry (HS-GC/MS)[J].Journal of Environmental Monitoring, 2008, 10(3):325-330. [15] MÄKI M, AALTONEN H, HEINONSALO J, et al.Boreal forest soil is a significant and diverse source of volatile organic compounds[J].Plant and Soil, 2019, 441(1/2):89-110. [16] ABIS L, LOUBET B, CIURARU R, et al.Reduced microbial diversity induces larger volatile organic compound emissions from soils[J].Scientific Reports, 2020, 10(1):6104. [17] INSAM H, SEEWALD M S A.Volatile organic compounds (VOCs) in soils[J].Biology and Fertility of Soils, 2010, 46(3):199-213. [18] LI G, CHENG Y F, KUHN U, et al.Physicochemical uptake and release of volatile organic compounds by soil in coated-wall flow tube experiments with ambient air[J].Atmospheric Chemistry and Physics, 2019, 19:2209-2232. [19] MA J M, FAN S F, SUN L, et al.Rapid analysis of fifteen sulfonamide residues in pork and fish samples by automated on-line solid phase extraction coupled to liquid chromatography-tandem mass spectrometry[J].Food Science and Human Wellness, 2020, 9(4):363-369. [20] HONG S H, SHIN D C, LEE Y J, et al.Health risk assessment of volatile organic compounds in urban areas[J].Human and Ecological Risk Assessment:An International Journal, 2017, 23(6):1454-1465. [21] MRAMBA A S, NDIBEWU P P, SIBALI L L, et al.A review on electrochemical degradation and biopolymer adsorption treatments for toxic compounds in pharmaceutical effluents[J].Electroanalysis, 2020, 32(12):2615-2634. [22] ST HELEN G, LIAKONI E, NARDONE N, et al.Comparison of systemic exposure to toxic and/or carcinogenic volatile organic compounds (VOC) during vaping, smoking, and abstention[J].Cancer Prevention Research (Phila), 2020, 13(2):153-162. [23] 张俊香,黄学敏,曹利,等.负载Cu改性活性炭吸附VOCs性能的研究[J].环境工程,2015,33(1):95-99. [24] LIOTTA L F.Catalytic oxidation of volatile organic compounds on supported noble metals[J].Environmental,2010, 100(3/4):403-412. [25] JUANG D F, LEE C H, CHEN W C, et al.Do the VOCs that evaporate from a heavily polluted river threaten the health of riparian residents?[J].Science of The Total Environment, 2010, 408(20):4524-4531. [26] NG S J, SIMS N F, TAY E X Y, et al.Removal of volatile organic compounds (VOCs) from water using mixtures of olive oil, lecithin, and vitamin E as phase transfer agents[J].Journal of Water Process Engineering, 2017, 18:58-64. [27] MOISAN K, CORDOVEZ V, VAN DE ZANDE E M, et al.Volatiles of pathogenic and non-pathogenic soil-borne fungi affect plant development and resistance to insects[J].Oecologia, 2019, 190(3):589-604. [28] TANG Z, ZHANG J, YU J L, et al.Allelopathic effects of volatile organic compounds from Eucalyptus grandis rhizosphere soil on Eisenia fetida assessed using avoidance bioassays, enzyme activity, and comet assays[J].Chemosphere, 2017, 173:307-317. [29] SHEN K, CHEN X D, CHEN J Y, et al.Development of MOF-derived carbon-based nanomaterials for efficient catalysis[J].Acs Catalysis, 2016, 6(9):5887-5903. [30] HU C G, DAI L M.Multifunctional carbon-based metal-free electrocatalysts for simultaneous oxygen reduction, oxygen evolution, and hydrogen evolution[J].Advanced Materials, 2017, 29(9):1604942. [31] CHO E A, YEON S H, SHIN K H, et al.Electrochemical performance of pitch-based activated carbon fibers for anode electrode in supercapacitors[J].Journal of Nanoscience and Nanotechnology, 2016, 16(10):10548-10551. [32] 冯宇, 刘平, 张立.VOCs高效吸附材料研究进展[J].当代化工, 2022, 51(3):671-676. [33] XIANG W, ZHANG X Y, CHEN K Q, et al.Enhanced adsorption performance and governing mechanisms of ball-milled biochar for the removal of volatile organic compounds (VOCs)[J].Chemical Engineering Journal, 2020, 385:123842. [34] KIM J M, KIM J H, LEE C Y, et al.Toluene and acetaldehyde removal from air on to graphene-based adsorbents with microsized pores[J].Journal of Hazardous Materials, 2018, 344:458-465. [35] KUMAR A, SINGH E, KHAPRE A, et al.Sorption of volatile organic compounds on non-activated biochar[J].Bioresource Technology, 2020, 297:122469. [36] 罗瑞, 陈旺, 张进, 等.碱处理和掺氮耦合改性对活性炭纤维吸附甲醛性能的影响[J].环境工程学报, 2018, 12(10):2791-2796. [37] JAYAAWARDHANA Y, GUNATILAKE S R, MAHATANTILA K, et al.Sorptive removal of toluene and m-xylene by municipal solid waste biochar:simultaneous municipal solid waste management and remediation of volatile organic compounds[J].Journal of Environmental Management, 2019, 238:323-330. [38] ZHOU X X, MOGHADDAM T B, CHEN M, et al.Biochar removes volatile organic compounds generated from asphalt[J].Science of the Total Environment, 2020, 745:141096. [39] 孙天杭, 沈晓芳, 张占恩, 等.邻苯二甲酸酯及邻苯二甲酸在碳管上的吸附[J].中国环境科学, 2021, 41(6):2717-2724. [40] CHEN Y T, HUANG Y P, WANG C, et al.Comprehending adsorption of methylethylketone and toluene and microwave regeneration effectiveness for beaded activated carbon derived from recycled waste bamboo tar[J].Journal of the Air & Waste Management Association, 2020, 70(6):616-628. [41] BEDANE A H, GUO T X, EIĆ M, et al.Adsorption of volatile organic compounds on peanut shell activated carbon[J].The Canadian Journal of Chemical Engineering, 2019, 97(1):238-246. [42] LI B, MI C W.Molecular perspective on charge-tunable adsorption of volatile organic compounds on carbon nanotubes[J].Physical Chemistry Chemical Physics, 2021, 23(4):2972-2980. [43] MOHAMMED J, NASRI N S, ZAINI M A A, et al.Adsorption of benzene and toluene onto KOH activated coconut shell based carbon treated with NH3[J].International Biodeterioration & Biodegradation, 2015, 102:245-255. [44] 白瑞, 高雯雯, 卢翠英, 等.还原石墨烯负载Fe3O4催化剂的制备及催化降解苯酚[J].化工科技, 2021, 29(2):6-9. [45] 岳先会, 金鑫, 谷成.碳材料促进硝基/卤素取代类有机污染物还原降解的研究进展[J].材料导报, 2020, 34(3):34-42. [46] 张露, 张求慧, 张文博.木材液化物活性碳纤维苯酚吸附性能研究[J].化工新型材料, 2015, 43(8):169-171,180. [47] JUNKAEW A, RUNGNIM C, KUNASETH M, et al.Metal cluster-deposited graphene as an adsorptive material for m-xylene[J].New Journal of Chemistry, 2015, 39(12):9650-9658. [48] KIM K J, KANG C S, YOU Y J, et al.Adsorption-desorption characteristics of VOCs over impregnated activated carbons[J].Catalysis Today, 2006, 111(3/4):223-228. [49] LI M S, WANG R, KUO D T F, et al.Linear free energy relationships for the adsorption of volatile organic compounds onto multiwalled carbon nanotubes at different relative humidities:comparison with organoclays and activated carbon[J].Environmental Science:Processes & Impacts, 2017, 19(3):276-287. [50] 张金龙, 李霄云, 包万鸿, 等.邻苯二甲酸和苯甲酸在功能化碳纳米管上的吸附行为[J].中国环境科学, 2018, 38(11):4106-4113. [51] OU Y H, CHANG Y J, LIN F Y, et al.Competitive sorption of bisphenol A and phenol in soils and the contribution of black carbon[J].Ecological Engineering, 2016, 92:270-276. [52] SANTOS-CLOTAS E, CABRERA-CODONY A, RUIZ B, et al.Sewage biogas efficient purification by means of lignocellulosic waste-based activated carbons[J].Bioresource Technology, 2019, 275:207-215. [53] ZHANG W X, CHENG H R, NIU Q, et al.Microbial targeted degradation pretreatment:a novel approach to preparation of activated carbon with specific hierarchical porous structures, high surface areas, and satisfactory toluene adsorption performance[J].Environmental Science & Technology, 2019, 53(13):7632-7640. [54] 安亚雄, 付强, 刘冰, 等.不同孔径活性炭吸附挥发性有机物的分子模拟[J].化工进展, 2019, 38(11):5136-5141. [55] 公绪金,董玉奇,李伟光,等.污泥基活性炭-甲醇工质对吸附/解吸特性[J].中国环境科学, 2021, 41(8):3626-3634. [56] 刘晓敏,邓先伦,朱光真,等.木质颗粒活性炭的孔结构对丁烷吸附性能的影响研究[J].林产化学与工业, 2012, 32(2):140-144. [57] 蒋剑春,王志高,邓先伦,等.丁烷吸附用颗粒活性炭的制备研究[J].林产化学与工业, 2005,25(3):5-8. [58] SHEN X H, OU R, LU Y T, et al.Record-high capture of volatile benzene and toluene enabled by activator implant-optimized banana peel-derived engineering carbonaceous adsorbents[J].Environment International, 2020, 143:105774. [59] FANG R M, HUANG H B, HUANG W J, et al.Influence of peracetic acid modification on the physicochemical properties of activated carbon and its performance in the ozone-catalytic oxidation of gaseous benzene[J].Applied Surface Science, 2017, 420:905-910. [60] ZHUANG Z C, WANG L, TANG J C.Efficient removal of volatile organic compound by ball-milled biochars from different preparing conditions[J].Journal of Hazardous Materials, 2021, 406:124676. [61] LIM S T, KIM J H, LEE C Y, et al.Mesoporous graphene adsorbents for the removal of toluene and xylene at various concentrations and its reusability[J].Scientific reports, 2019, 9(1):1-12. [62] YUE Z R, VAKILI A, WANG J W.Activated carbon fibers from meltblown isotropic pitch fiber webs for vapor phase adsorption of volatile organic compounds[J].Chemical Engineering Journal, 2017, 330:183-190. [63] THEONESTE N, KIM M H, SOLIS K L, et al.KOH activated pine tree needle leaves biochar as effective sorbent for VOCs in water[J].Membrane and Water Treatment, 2018, 9(5):293-300. [64] GUO X C, LI X Y, GAN G Q, et al.Functionalized activated carbon for competing adsorption of volatile organic compounds and water[J].ACS Applied Materials & Interfaces, 2021, 13(47):56510-56518. [65] BAUR G B, BESWICK O, SPRING J, et al.Activated carbon fibers for efficient VOC removal from diluted streams:the role of surface functionalities[J].Adsorption, 2015, 21(4):255-264. [66] ZHANG X Y, XIANG W, MIAO X D, et al.Microwave biochars produced with activated carbon catalyst:characterization and sorption of volatile organic compounds (VOCs)[J].Science of the Total Environment, 2022, 827:153996. [67] ZHANG X Y, MIAO X D, XIANG W, et al.Ball milling biochar with ammonia hydroxide or hydrogen peroxide enhances its adsorption of phenyl volatile organic compounds (VOCs)[J].Journal of Hazardous Materials, 2021, 403:123540. [68] 贾李娟, 沈祥斌, 杨茗璇, 等.石墨烯和超高交联树脂对苯和对二甲苯的动态吸附特性[J].安全与环境学报, 2022,22(6):3483-3492. [69] 李世杰, 黄慧娟, 尚莉莉, 等.活性炭净化室内甲醛的研究进展[J].材料导报, 2021, 35(增刊2):75-80. [70] 李琳, 辛智慧, 秦君, 等.氧化硅-石墨烯气凝胶介孔复合材料的合成及其对苯的吸附性能[J].化学通报, 2021, 84(10):1054-1059. [71] 杨金杯, 叶银钕, 赖衍斌.石墨烯对4-硝基苯酚的吸附性能研究[J].应用化工, 2021, 50(3):718-723. [72] 徐恺, 唐克, 常春, 等.芹菜籽源药渣生物炭制备及对苯酚的吸附性能[J].工业水处理, 2020, 40(6):36-39. [73] 桑瑞, 孟宪荣, 许伟, 等.污泥基生物炭活化过硫酸钠降解水中萘的研究[J].现代化工, 2022,42(7):182-187. [74] 马楠, 田耀金, 杨广平, 等.改性活性碳纤维电芬顿降解苯酚废水性能研究[J].环境科学, 2014, 35(7):2627-2632. [75] KIM M J, KIM K H, KIM Y, et al.Volatile organic compounds (VOCs) removal using ACFs with electroless plating CuO as catalysts[J].Carbon Letters, 2020, 30(6):675-682. [76] 余雪, 王亮, 冯丽娟, 等.Au/BiOBr/石墨烯复合物的制备及其苯酚降解光催化性能[J].燃料化学学报, 2016, 44(8):937-942. [77] 谭万春, 李芬, 万俊力, 等.活性炭/铁氧化物复合材料催化降解水中的苯酚[J].环境工程学报, 2013, 7(5):1744-1748. [78] 冯俊生, 张郓, 王晓红, 等.石墨烯电极电活化过硫酸盐降解含酚废水研究[J].安全与环境学报, 2021, 21(1):404-410. [79] 王淑媛, 李济吾, 洪亚军.Ti-Cu-Mn复合物负载石墨烯催化剂制备及其降解二甲苯性能[J].环境科学学报, 2016, 36(7):2375-2381. [80] SM S N, MAIYA M P.Photocatalytic degradation of gaseous toluene using self-assembled air filter based on chitosan/activated carbon/TiO2[J].Journal of Environmental Chemical Engineering, 2019, 7(6):103455. [81] FENG Q Y, LIU B Y, JI J, et al.Enhanced photo-degradation of gaseous toluene over MnO<em>x/TiO2/activated carbon under a novel microwave discharge electrodeless lamps system[J].Applied Surface Science, 2021, 547:148955. [82] 康凯.石墨烯/二氧化钛修饰的光催化基板在工业VOCs降解中的应用研究[J].环境科技, 2021, 34(6):41-44. [83] 崔佳丽, 高永华, 高利珍.SDP法制备碳纳米管-TiO2纳米复合光催化剂及降解喹啉[J].新型炭材料, 2016, 31(4):399-406. [84] CHENG X, GUO H G, ZHANG Y L, et al.Non-photochemical production of singlet oxygen via activation of persulfate by carbon nanotubes[J].Water Research, 2017, 113:80-88. [85] 纪志永, 李鑫钢, 孙津生.炭材料在水污染修复领域的应用研究[J].材料导报, 2006,20(7):84-87. [86] 尹媛,生弘杰,王紫泉,等.不同载体材料固定Sphingobium sp.PHE3对溶液中菲的降解研究[J/OL].土壤学报:1-12[2022-10-29].http://gfffg4668e74e3ad24b0ahxo9066p0qfp96fbq.fgfy.kust.cwkeji.cn/kcms/detail/32.1119.P.20220701.0041.002.html. [87] SANTOS-CLOTAS E, CABRERA-CODONY A, BOADA E, et al.Efficient removal of siloxanes and volatile organic compounds from sewage biogas by an anoxic biotrickling filter supplemented with activated carbon[J].Bioresource Technology, 2019, 294:122136. [88] 孔露露,周启星.生物炭输入土壤对其石油烃微生物降解力的影响[J].环境科学学报, 2016,36(11):4199-4207. [89] 凌昊, 孟捷, 陶进国, 等.Ce-ZnO/AC在真空紫外下催化降解对二甲苯废气[J].环境工程学报, 2020, 14(11):3092-3101. [90] 孙鹏, 张凯凯, 张玉, 等.向日葵秸秆生物炭强化Fe(Ⅲ)/S2O82-体系降解苯甲酸[J].环境科学, 2020, 41(5):2301-2309. [91] 刘伟军, 段平洲, 胡翔, 等.活性炭纤维三维电极电催化降解水中间甲酚:效能及影响因素研究[J].中国环境科学, 2019, 39(1):164-169. [92] 李蓉, 肖新颜, 万彩霞.活性炭负载纳米TiO2光催化降解气相丙酮[J].材料导报, 2011, 25(8):68-70,73. [93] 刘科.TiO2/石墨烯纳米复合材料的制备及催化降解VOCs研究[J].功能材料, 2021, 52(10):10207-10211. [94] 吝美霞, 李法云, 王玮, 等.生物炭负载P掺杂g-C3N4复合光催化剂制备及其对萘光催化降解机制[J].环境科学学报, 2021, 41(8):3200-3210. [95] 彭人勇, 刘淑娟, 赵玉美.活性炭纤维负载TiO2光催化降解甲醛的影响因素[J].环境工程学报, 2009, 3(7):1294-1298. [96] LIU Z S, PENG Y H, LI W K.Effects of activated carbon fibre-supported metal oxide characteristics on toluene removal[J].Environmental Technology, 2014, 35(12):1499-1507.
点击查看大图
计量
- 文章访问数: 88
- HTML全文浏览量: 10
- PDF下载量: 8
- 被引次数: 0