INFLUENCE OF RESIDUAL NANOPARTICLES IN MUNICIPAL SEWAGE ON FORMATION OF CHLORINATION DISINFECTION BY-PRODUCTS
-
摘要: 为明确污水厂中频繁暴露的纳米颗粒(NPs)对消毒副产物(DBPs)生成规律的影响,以二级出水为底物,重点考察了氯消毒与UV/氯消毒过程中NPs存在浓度对DBPs生成的影响,并通过三维荧光光谱与紫外可见差分光谱分析NPs与二级出水中残留的有机物(EfOM)的络合情况。实验结果表明:3种NPs的存在降低了二级出水UV254与SUVA含量,并通过疏水作用络合EfOM,造成Zeta电位、荧光强度、紫外吸光光度下降。当nTiO2、nAg、NZVI 3种NPs的存在浓度均为500 μg/L时,在氯消毒过程中,三氯甲烷(TCM)、二氯已腈(DCAN)、一溴二氯甲烷(BDCM)生成量的减少量约是NPs存在浓度为10 μg/L时的2~5倍。在UV/氯消毒过程中,nAg的存在导致TCM、DCAN生成量分别上升了2.18,1.53 μg/L,对BDCM生成的影响不明显;nTiO2的存在导致TCM、DCAN、BDCM生成量分别减少了4.09,2.02,2.15 μg/L;NZVI的存在导致TCM、DCAN、BDCM生成量分别减少了2.36,1.3,1.16 μg/L。实验通过研究污水厂残留NPs对DBPs生成机制的影响,为污水厂的安全运行提供数据支撑。Abstract: In this study, in order to clarify the influence of frequent exposure of nanoparticles (NPs) in wastewater plants on disinfection by-products (DBPs) generation, the secondary effluent was used as the substrate to investigate the effect of NPS concentration on DBPs generation in the chlorination disinfection and UV/chlorination disinfection process. Additionally, the complexation of NPs with residual organic matter (EfOM) in secondary effluent was analyzed by 3D-EEM and UV-vis differential spectra. The results showed that the content of UV254 and SUVA in secondary effluent decreased by the presence of three NPs, and the Zeta potential, fluorescence intensity and UV absorbance were decreased by hydrophobic complexation of EfOM. When the concentration of NPs (nTiO2, nAg, NZVI) was all 500 μg/L, In the process of chlorine disinfection, the reduction of chloroform (TCM), dichloroacetonitrile (DCAN) and bromodichloromethane (BDCM) was about 2 to 5 times that of NPS at 10 μg/L. In the process of UV/chlorine disinfection, the generation of TCM and DCAN increased by 2.18 and 1.53 μg/L respectively in the presence of nAg, but the effect of nAg on the generation of BDCM was not obvious; the generation of TCM, DCAN and BDCM was reduced by 4.09,2.02,2.15 μg/L, respectively, in the presence of nTiO2; The generation of TCM, DCAN and BDCM was reduced by 2.36,1.3,1.16 μg/L, respectively, in the presence of NZVI. This study investigates the impact of residual NPs from wastewater treatment plants on the mechanism of DBP formation, providing data support for the safe operation of such facilities.
-
[1] CHOW A T,LEE S T,O’GEEN A T,et al.Litter contributions to dissolved organic matter and disinfection byproduct precursors in california oak woodland watersheds[J].Journal of Environmental Quality,2009,38(6):2334-2343. [2] 王雨,程丽华,毕学军,等.污水深度处理次氯酸钠消毒副产物二氯乙腈的生成影响研究[J].水处理技术,2014,40(6):50-53. [3] CHAUDHURI R G,PARIA S.Core/shell nanoparticles:classes,properties,synthesis mechanisms,characterization,and applications[J].Chemical Reviews,2012,112(4):2373-2433. [4] VANCE M E,TODD K,VEJERANO E P,et al.Nanotechnology in the real world:redeveloping the nanomaterial consumer products inventory[J].Beilstein Journal of Nanotechnology,2015,6:1769-1780. [5] 黄俊.纳米银对海洋微藻的环境效应及其毒性机制研究[D].上海:华东师范大学,2016. [6] NABI M M,WANG J,MEYER M,et al.Concentrations and size distribution of TiO2 and Ag engineered particles in five wastewater treatment plants in the United States[J].Science of the Total Environment,2020,753:142017. [7] BLASER S A,SCHERINGER M,MACLEOD M,et al.Estimation of cumulative aquatic exposure and risk due to silver:contribution of nano-functionalized plastics and textiles[J].Science of the Total Environment,2008,390(2/3):396-409. [8] KING S M,JARVIE H P,BOWES M J,et al.Exploring controls on the fate of PVP-capped silver nanoparticles in primary wastewater treatment[J].Environmental Science Nano,2015,2(2):177-190. [9] HOU L L,LI K Y,DING Y Z,et al.Removal of silver nanoparticles in simulated wastewater treatment processes and its impact on COD and NH3 reduction[J].Chemosphere,2012,87(3):248-252. [10] DOBROVIC S,JURETIC H,LJUBAS D,et al.Genotoxicity and effects of nanosilver contamination in drinking water disinfection[J].Water Science & Technology Water Supply,2012,12(6):829-836. [11] SHARMA V K,YANG X,CIZMAS L,et al.Impact of metal ions,metal oxides,and nanoparticles on the formation of disinfection byproducts during chlorination[J].Chemical Engineering Journal,2017,317(Complete):777-792. [12] MAO Y Q,WANG X M,GUO X F,et al.Characterization of haloacetaldehyde and trihalomethane formation potentials during drinking water treatment[J].Chemosphere:Environmental toxicology and risk assessment,2016,159(Sep.):378-384. [13] 张笑笑,沈吉敏,康晶,等.金属离子对高有机物水源水典型消毒副产物生成的影响[J].给水排水,2020(增刊2):70-79. [14] KENT F C,MONTREUIL K R,BROOKMAN R M,et al.Photocatalytic oxidation of DBP precursors using UV with suspended and fixed TiO2[J].Water Research,2011,45(18):6173-6180. [15] 沈墨海,阴永光,刘景富.天然有机质分子量对富勒烯在水体中团聚行为的影响[C]//中国化学会,中国环境科学学会.全国环境化学学术大会.2013:39-40. [16] 张金伟,王瑶,温永汉,等.环境因素对纳米银体系稳定性的影响[J].精细化工,2021,38(1):91-96. [17] 李慧敏,陈学姣,尤明涛,等.碳纳米管对天然有机质氯化消毒副产物生成的影响[J].北京大学学报(自然科学版),2021,57(2):299-310. [18] FAN J,GUO Y H,WANG J J,et al.Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles[J].Journal of Hazardous Materials,2009,166(2/3):904-910. [19] CHOI S,CHEN C L,JOHNSTON M V,et al.Engineered nanoparticles in wastewater systems:effect of organic size on the fate of nanoparticles[J].Membrane Water Treatment,2022,13(1):29-37. [20] CHEN W,WESTERHOFF P,LEENHEER J A,et al.Fluorescence excitation-Emission matrix regional integration to quantify spectra for dissolved organic matter[J].Environmental Science & Technology,2003,37(24):5701-5710. [21] LIU M X,HAN X K,LIU C Q,et al.Differences in the spectroscopic characteristics of wetland dissolved organic matter binding with Fe3+,Cu2+,Cd2+,Cr3+ and Zn2+[J].Science of the Total Environment,2021,800:149476. [22] YAN M Q,KORSHIN G V.Comparative examination of effects of binding of different metals on chromophores of dissolved organic matter[J].Environmental Science and Technology,2014,48(6):3177-3185. [23] PADHI R K,SUBRAMANIAN S,SATPATHY K K.Formation,distribution,and speciation of DBPs (THMs,HAAs,ClO2-,and ClO3-) during treatment of different source water with chlorine and chlorine dioxide[J].Chemosphere,2019,218:540-550. [24] BALCIOGLU I A,OTKER M.Treatment of pharmaceutical wastewater containing antibiotics by O3- and O3-/H2O2 processes[J].Chemosphere,2003,50(1):85-95. [25] LIN H C,WANG G S.Effects of UV/H2O2 on NOM fractionation and corresponding DBPs formation[J].Desalination,2011,270(1/2/3):221-226. [26] XU Y,WANG C,HOU J,et al.Strategies and relative mechanisms to attenuate the bioaccumulation and biotoxicity of ceria nanoparticles in wastewater biofilms[J].Bioresource Technology,2018,265:102-109. [27] CHEN W,DUAN L,ZHU D Q.Adsorption of polar and nonpolar organic chemicals to carbon nanotubes[J].Environmental Science & Technology,2007,41(24):8295-8300. [28] ZHAO Y,YANG H W,LIU S T,et al.Effects of metal ions on disinfection byproduct formation during chlorination of natural organic matter and surrogates[J].Chemosphere,2016,144:1074-1082. [29] YAN W L,LIEN H L,KOEL B E,et al.Iron nanoparticles for environmental clean-up:recent developments and future outlook[J].Environmental Science-Processes & Impacts,2013,15(1):63-77. [30] 钱文涛.纳米Fe/Ni双金属催化剂对水中氯代甲烷类物质和Cr(Ⅵ)的同步去除机理研究[D].长沙:湖南大学,2016. [31] CHOI O,CLEUENGER T E,DENG B L,et al.Role of sulfide and ligand strength in controlling nanosilver toxicity[J].Water Research,2009,43(7):1879-1886. [32] 刘莹,王向宇.纳米二氧化钛光催化材料研究新进展[J].化工中间体,2005(1):6-10. [33] 刘刚,张鹏,徐瑞芬,等.纳米TiO2粉体抗菌、抗病毒性能研究[J].功能材料,2004,35(增刊1):2514-2517. [34] LIU S,LIM M,FABRIS R,et al.TiO2 photocatalysis of natural organic matter in surface water:impact on trihalomethane and haloacetic acid formation potential[J].Environmental Science & Technology,2008,42(16):6218-6223. [35] METCH J W,MA Y J,PRUDEN A,et al.Enhanced disinfection by-product formation due to nanoparticles in wastewater treatment plant effluents[J].Environmental Science-Water Research & Technology,2015,1(6):823-831.
点击查看大图
计量
- 文章访问数: 112
- HTML全文浏览量: 25
- PDF下载量: 2
- 被引次数: 0