ENHANCEMENT OF STABILITY AND ANTIMONY REMOVAL PERFORMANCE OF mZVI BY XANTHAN GUM AND GUAR GUM
-
摘要: 为了克服微米铁mZVI的结构团聚性低问题,提高mZVI对地下水锑的原位修复效果,采用黄原胶(XG)和瓜尔胶(GG)改性剂以一定比例改性,进行mZVI、mZVI-活性炭AC、XG/GG-mZVI和XG/GG-mZVI-AC 4种材料的对照试验,通过沉降试验评价4种材料的稳定性和黏性,选择Sb作为目标污染物,探究4种材料对Sb的去除性能。试验结果表明:在投加XG∶GG(摩尔比)为4∶1、3∶2、1∶1、3∶2和1∶4时,相较mZVI和mZVI-AC,XG/GG-mZVI和XG/GG-mZVI-AC稳定性显著提升,相对分光光度值均在90%以上,随着XG/GG比例增高,其稳定性随之提升;在改性剂浓度为3.00 g/L,投加浓度比为4∶1条件下,XG/GG-mZVI黏度测试结果最高;去除试验显示XG/GG-mZVI对锑的去除率最高,可达到67.13%。XG和GG混合改性剂的投加提高了mZVI的稳定性和反应活性,混合改性剂投加质量浓度越大,改性剂缓冲作用越明显。Abstract: In order to solve the problem of low structural agglomeration of micron iron mZVI and improve the in-situ remediation effect of mZVI in the remediation of groundwater antimony wastewater, Xanthan gum (XG) and guar gum (GG) modifiers were used to modify mZVI in a certain proportion, and contrast tests of mZVI, mZVI-activated carbon (AC), XG/GG mZVI and XG/GG mZVI-AC were carried out. The stability and viscosity of the four materials were evaluated through sedimentation tests, and antimony was selected as the target pollutant, to explore the removal performance of four materials for antimony. The experimental results illustrated that when the dosage ratio of XG and GG was 4∶1, 3∶2, 1∶1, 3∶2, 1∶4, compared with mZVI and mZVI-AC, the stability of XG/GG-mZVI and XG/GG-mZVI-AC was significantly improved, and the relative spectrophotometric values were all above 90%. As the ratio of XG/GG increase, its stability increased; when the concentration of the modifier was 3.00 g/L, the ratio was 4∶1, the viscosity test result of XG/GG-mZVI was the highest; the removal experiment showed that XG/GG-mZVI has the highest removal rate on antimony, reaching 67.13%. The stability and reactivity of mZVI were improved by the addition of XG and GG, and the buffering effect of the modifier was more obvious when the concentration of the modifier increased.
-
Key words:
- micron iron /
- xanthan gum /
- guar gum /
- stability /
- antimony removal
-
[1] 李志萍,杨晶晶,孙程奇,等.水中锑污染处理方法的研究进展[J].工业水处理,2018,38(6):12-16,26. [2] 洪百雄,刘伟.甘肃宕昌县大草滩锑矿地质特征及找矿标志[J].甘肃科技,2009,25(19):45-47. [3] 徐清华,樊鹏,董红钰,等.吸附法去除水中锑的研究进展综述[J].土木与环境工程学报(中英文),2020,42(6):143-152. [4] WANG W,HU H,LIU Y,et al.Comparative study on the removal of antinomy(Ⅴ) from dyeing and finishing wastewater by conventional and enhanced coagulation[J].Acta Scientiae Circumstantiae,2019,39(10):3374-3380. [5] SONG P P,YANG Z H,XU H Y,et al.Investigation of influencing factors and mechanism of antimony and arsenic removal by electrocoagulation using Fe-Al electrodes[J].Industrial & Engineering Chemistry Research,2014,53(33):12911-12919. [6] LIN Y X,REN L F,SHAO J H.Study on application of polyethersulfone membrane with hybrid coating modification in complexation-ultrafiltration process for antimony removal[J].Technology of Water Treatment,2021,47(2):22-26. [7] RIVEROS P A.The removal of antimony from copper electrolytes using amino-phosphonic resins:improving the elution of pentavalent antimony[J].Hydrometallurgy,2010,105(1/2):110-114. [8] LONG X J,WANG X,GUO X J,et al.A review of removal technology for antimony in aqueous solution[J].Journal of Environmental Sciences,2020,90:189-204. [9] RAHAMAN M S,BASU A,ISLAM M R.The removal of As(Ⅲ) and As(Ⅴ) from aqueous solutions by waste materials[J].Bioresource Technology,2008,99(8):2815-2823. [10] GU Y W,WANG B B,HE F,et al.Mechanochemically sulfidated microscale zero valent iron:pathways,kinetics,mechanism,and efficiency of trichloroethylene dechlorination[J].Environmental Science & Technology,2017,51(21):12653-12662. [11] 刘华秋,付融冰,温东东,等.颗粒活性炭对尾渣污染地下水中氰化物的吸附去除效能[J].环境化学,2020,39(12):3531-3541. [12] 李志红,王广才,史浙明,等.渗透反应格栅技术综述:填充材料实验研究、修复技术实例和系统运行寿命[J].环境化学,2017,36(2):316-327. [13] 韩君,辛佳,郑西来,等.改性微米铁对三氯乙烯去除机制与效能研究[J].青岛理工大学学报,2015,36(3):60-67. [14] 赵勇胜,李彧.黄原胶改性微米铁修复地下水中Cr(Ⅵ)污染的试验[J].吉林大学学报(地球科学版),2021,51(4):1224-1230. [15] XIN J,TANG F L,ZHENG X L,et al.Transport and retention of xanthan gum-stabilized microscale zero-valent iron particles in saturated porous media[J].Water Res,2016,88:199-206. [16] COMBA S,SETHI R.Stabilization of highly concentrated suspensions of iron nanoparticles using shear-thinning gels of xanthan gum[J].Water Res,2009,43(15):3717-3726. [17] GASTONE F,TOSCO T,SETHI R.Green stabilization of microscale iron particles using guar gum:bulk rheology,sedimentation rate and enzymatic degradation[J].J Colloid Interface Sci,2014,421:33-43. [18] XUE D,SETHI R.Viscoelastic gels of guar and xanthan gum mixtures provide long-term stabilization of iron micro- and nanoparticles[J].Journal of Nanoparticle Research,2012,14(11):1239. [19] NAVARRO P,ALGUACIL F J J H.Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon[J],2002,66(1):101-105. [20] ZOU Y D,WANG X X,KHAN A,et al.Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions:a review[J].Environmental Science & Technology,2016,50(14):7290-7304. [21] 王梦露,郝春明,张伟,等.生物活性炭应急吸附处理高锑矿井水实验研究[J].华北科技学院学报,2020,17(1):89-94. [22] ZHANG Y X,YANG S Y,ZHANG Y,et al.Enhancement of Cr(Ⅵ) removal by mechanically activated micron-scale zero-valent aluminum (MA-mZVAl):performance and mechanism especially at near-neutral pH[J].Chemical Engineering Journal,2018,353:760-768. [23] 姚梦东,岳俊杰,徐雪婧,等.球磨硫化零价铁活化过硫酸盐降解水体中有机氯农药[J].环境工程学报,2021,15(8):2563-2575. [24] 张建昆,冯启言,张林军,等.活性炭负载纳米零价铁去除对硝基酚的实验研究[J].应用化工,2020,49(1):90-93. [25] NORTON I T,GOODALL D M,FRANGOU S A,et al.Mechanism and dynamics of conformational ordering in xanthan polysaccharide[J].Journal of Molecular Biology,1984,175(3):371-394. [26] SYRBE A,BAUER W J,KLOSTERMEYER N.Polymer science concepts in dairy systems:an overview of milk protein and food hydrocolloid interaction[J].International Dairy Journal,1998,8(3):179-193. [27] 张焕仕,雷鹏,朱昌玲,等.普鲁兰酶改性瓜尔胶及其与黄原胶复配性能研究[J].中国野生植物资源,2019,38(6):44-48,61. [28] 桑媛园,孙桓五,段海栋,等.黄原胶添加量对液体磁性磨具稳定性的影响[J].科学技术与工程,2018,18(24):230-234. [29] 范亮姣,田玉芹,钱钦,等.黄原胶和瓜尔胶混合溶液及其硼砂交联体系的流变性能[J].应用化学,2020,37(5):531-540. [30] 韩君.改性微米铁对三氯乙烯的去除效能研究[D].青岛:中国海洋大学,2015. [31] 金小琳.黄原胶的改性及其在水处理中的应用[J].农业与技术,2022,42(10):98-100. [32] LIU C C,TSENG D H,WANG C Y.Effects of ferrous ions on the reductive dechlorination of trichloroethylene by zero-valent iron[J].Journal of Hazardous Materials,2006,136(3):706-713. [33] LUO H P,JIN S,FALLGREN P H,et al.Prevention of iron passivation and enhancement of nitrate reduction by electron supplementation[J].Chemical Engineering Journal,2010,160(1):185-189. [34] TOSCO T,GASTONE F,SETHI R.Guar gum solutions for improved delivery of iron particles in porous media (Part 2):iron transport tests and modeling in radial geometry[J].Journal of Contaminant Hydrology,2014,166:34-51. [35] 陈嘉伟.基于零价铁激发的高级氧化体系降解水中氯酚类物质[D].长春:吉林建筑大学,2020. [36] 田芳明.改性硫化微米零价铁用于地下水中阿特拉津的降解研究[D].南充:西华师范大学,2021. [37] CHENG Q,LI Q R,HUANG X J,et al.The high efficient Sb(Ⅲ) removal by cauliflower like amorphous nanoscale zero-valent iron (A-nZVI)[J].Journal of Hazardous Materials,2022,436:129056. [38] FU F,DIONYSIOU D D,LIU H.The use of zero-valent iron for groundwater remediation and wastewater treatment:a review[J].Journal of Hazardous Materials,2014,267:194-205. [39] KATSOYIANNIS I A,RUETTIMANN T,HUG S J.pH dependence of Fenton reagent generation and As(Ⅲ) oxidation and removal by corrosion of zero valent iron in aerated water[J].Environmental Science & Technology,2008,42(19):7424-7430. [40] KEENAN C R,SEDLAK D L.Factors affecting the yield of oxidants from the reaction of manoparticulate zero-valent iron and oxygen[J].Environmental Science & Technology,2008,42(4):1262-1267. [41] BATAINEH H,PESTOVSKY O,BAKAC A.pH-induced mechanistic changeover from hydroxyl radicals to iron(Ⅳ) in the Fenton reaction[J].Chemical Science,2012,3(5):1594-1599. [42] HUG S J,LEUPIN O.Iron-catalyzed oxidation of arsenic(Ⅲ) by oxygen and by hydrogen peroxide:pH-dependent formation of oxidants in the Fenton reaction[J].Environmental Science & Technology,2003,37(12):2734-2742. [43] LEE C,SEDLAK D L.Enhanced Formation of Oxidants from bimetallic nickel-iron nanoparticles in the presence of oxygen[J].Environmental Science & Technology,2008,42(22):8528-8533. [44] ZHU H J,HUANG Q,FU S,et al.Removal of antimony(Ⅴ) from drinking water using nZVI/AC:optimization of batch and fix bed conditions[J].Toxics,2021,9(10):266. [45] ZHU H,HUANG Q,SHI M,et al.Adsorption of Sb(Ⅲ) from aqueous solution by nZVI/AC:a magnetic fixed-bed column study[J].Nanomaterials,2021,11(8):1912. [46] 黄斐,张玲.黄原胶-瓜尔豆胶混合物对水包油型乳状液稳定性的影响[J].食品科技,2021,46(11):259-263. [47] KHOURYIEH H A,HERALD T J,ARAMOUNI F,et al.Intrinsic viscosity and viscoelastic properties of xanthan/guar mixtures in dilute solutions:effect of salt concentration on the polymer interactions[J].Food Research International,2007,40(7):883-893. [48] TAKEMASA M,NISHINARI K.Solution structure of molecular associations investigated using NMR for polysaccharides:xanthan/galactomannan mixtures[J].Journal of Physical Chemistry B,2016,120(12):3027-3037. [49] FAN P,SUN Y,QIAO J,et al.Influence of weak magnetic field and tartrate on the oxidation and sequestration of Sb(Ⅲ) by zerovalent iron:batch and semi-continuous flow study[J].Journal of Hazardous Materials,2018,343:266-275. [50] MOK W M,WAI C M.Simultaneous extraction of trivalent and pentavalent antimony and arsenic species in natural waters for neutron activation analysis[J].Anal.Chem.,1987,59(2):233-236. [51] 陈元铉.零价锰及零价锰铁复合材料对水中锑的去除研究[D].广州:广州大学,2022. [52] 范淑芬,辛佳,黄静怡,等.基于零价铁的地下水化学还原修复体系中的电子转移有效性和电子竞争机制[J].化学进展,2018,30(7):1035-1046. [53] SHI X D,WEI W,WU L,et al.Zero-valent iron mediated biological wastewater and sludge treatment[J].Chemical Engineering Journal,2021,426:130821.
点击查看大图
计量
- 文章访问数: 79
- HTML全文浏览量: 18
- PDF下载量: 4
- 被引次数: 0