RESPONSE OF THREE PLANTS TO TETRACYCLINE POLLUTION STRESS IN BIORETENTION CELL
-
摘要: 为探究生物滞留池体系内(bioretention cell,BRC)植物对抗生素及氮、磷复合污染的响应,选用菖蒲(Acorus calamus)、虉草(Phalaris arundinacea)和芦苇(Phragmites communis)作为研究对象,在不同四环素(tetracycline,TC)浓度(0,0.1,0.6,1.2,1.8 μg/mL)下进行间歇批次试验。检测TC、氮素、磷素复合污染物在植物体内的富集量及BRC系统出水中的浓度,考察污染物的富集转运及去除特征;分析有机酸的变化,探讨根系分泌物对复合污染的响应机制。结果表明: 1) 在TC胁迫下,植物对TC的富集能力为菖蒲>虉草>芦苇,3种植物氮、磷富集系数(bioconcerntration factors,BCF)均与TC浓度呈负相关,氮磷转运系数(translocation factors,TF)顺序为芦苇>虉草>菖蒲;无TC胁迫下,3种植物的氮BCF差异不显著,均在4.80~5.39,磷BCF差异显著且顺序为虉草>菖蒲>芦苇。2) 3种植物BRC系统均可稳定高效去除TC,在0.1 μg/mL TC时去除率接近99.70%,在0.6,1.2,1.8 μg/mL TC时去除率均高于99.90%。TC胁迫时,菖蒲和芦苇BRC的总氮(TN)去除率均有下降,分别从73.15%、70.55%下降至最低为54.45%、47.70%,虉草BRC的TN去除率保持稳定在65%左右,菖蒲、虉草和芦苇BRC的TP去除率均明显增高,分别由75.53%、82.71%和78.64%升至最高为96.79%、98.80%和97.91%。3) TC胁迫下,3种植物柠檬酸分泌能力均增强,且菖蒲和虉草的柠檬酸分泌量与TC去除率呈显著正相关,芦苇的柠檬酸分泌量与TP去除率呈显著正相关,柠檬酸可作为外源有机酸提高植物BRC系统对TC、TP的去除。该研究结果对植物BRC去除抗生素污水的实际工程具有参考价值。Abstract: To explore the response of plants in a bioretention cell (BRC) system to antibiotics and nitrogen and phosphorus compound pollution, Acorus calamus, Phalaris arundinacea and Phragmites communis was selected as the research objects. Intermittent batch tests were performed at different concentrations of tetracycline (TC) (0, 0.1, 0.6, 1.2, 1.8 μg/mL) in the influent. The bioconcentration in plants and concentrations in the effluent containing tetracycline, nitrogen and phosphorus compound pollutants were tested, and the bioconcentration, translocation and removal characteristics of pollutants were investigated; the change of organic acid was analyzed, and the response mechanism of root secretion to compound pollution was discussed. The results showed that: 1) with TC stress, the bioconcentration ability of plants to TC was in the order of Acorus calamus>Phalaris arundinacea>Phragmites communis. The bioconcentration factors (BCF) of nitrogen and phosphorus of the three plants were negatively correlated with TC concentration, and the translocation factors (TF) of nitrogen and phosphorus were in the order of Phragmites communis>Phalaris arundinacea>Acorus calamus. The difference in nitrogen BCF of the three plants without TC stress was not significant and ranged from 4.80 to 5.39, and there was a significant difference in phosphorus BCF, in the order of Phalaris arundinacea>Acorus calamus>Phragmites communis. 2) The three plant BRC systems could remove TC stably and efficiently, with 0.1 μg/mL of TC, the removal rate of TC was close to 99.70%; with 0.6, 1.2, 1.8 μg/mL of TC, the removal rate of TC was higher than 99.90%. With TC stress, the total nitrogen (TN) removal rates of both Acorus calamus and Phragmites communis in BRC decreased respectively from 73.15% and 70.55% to a minimum of 54.45% and 47.70%, but the TN removal rate of Phalaris arundinacea in BRC remained stable at around 65%. The total phosphorus (TP) removal rate of Acorus calamus, Phalaris arundinacea and Phragmites communis in BRC increased significantly from 75.53%, 82.71% and 78.64% to a maximum of 96.79%, 98.80% and 97.91%, respectively. 3) With TC stress, the citric acid secretion ability of the three plants increased, the amount of citric acid secreted by Acorus calamus and Phalaris arundinacea was significantly and positively correlated with the removal rate of TC, and the amount of citric acid secreted by Phragmites communis was significantly and positively correlated with the removal rate of TP. Citric acid can be used as an exogenous organic acid to improve the removal rate of TC and TP in plant BRC systems. The results of this study are useful for the practical engineering of antibiotic effluent removal by plant BRC.
-
[1] 许萍,何俊超,张建强,等.生物滞留强化脱氮除磷技术研究进展[J].环境工程,2015,33(11):21-25,30. [2] YAN Y,WANG Y,CHEN T,et al.Decontamination and ecological restoration performance of a bioretention cell-microbial fuel cell under multiple-antibiotics stress[J].Applied Sciences,2023,13(4):2320. [3] 陈甜婧.不同植物影响生物滞留池去除四环素的效能及机制研究[D].兰州:兰州理工大学,2022. [4] 赵书慧,张振华,欧张丹,等.国内农作物根系分泌物研究热点的初步探析[J].浙江农业学报,2023,3(19):1-13. [5] 刘冰逸,罗敏,邵阳,等.土壤根际微区放射性核素迁移影响因素研究进展[J].环境工程,2021,39(12):227-233. [6] 何洋,董志成,刘林德,等.沉积物中多环芳烃的植物修复研究进展[J].环境工程,2018,36(2):168-172. [7] 罗晓蔓,周书宇,杨雪.植物根系分泌物的分类和作用[J].安徽农业科学,2019,47(4):37-39,45. [8] V V,K R,P F.Root exudates of sugar beet:composition and the significance of their study and azetidin-2-carboxylic acid in sugar beet[J].Listy Cukrovarnické a epa? ské,2012,128(1):22-25. [9] 徐炜杰,郭佳,赵敏,等.重金属污染土壤植物根系分泌物研究进展[J].浙江农林大学学报,2017,34(6):1137-1148. [10] 徐秀月,吴永贵,饶益龄,等.模拟湿地植物根系分泌物对酸性矿山废水沉淀物中Fe、Mn释放及形态的影响[J].环境工程,2017,35(6):39-43. [11] 龙珍,徐海涛,张亚平,等.活化剂联合植物移除污染土壤重金属的研究进展[J].环境工程,2016,34(10):172-176,152. [12] FU H,HY Y,X T,et al.Influence of cadmium stress on root exudates of high cadmium accumulating rice line (Oryza sativa L.)[J].Ecotoxicology & Environmental Safety,2018,64(12):264-277. [13] LIU J,MAGALHAES J V,SHAFF J E,et al.Aluminum-activated citrate and malate transporters from the MATE and ALMT families function independently to confer Arabidopsis aluminum tolerance[J].Plant Journal,2009,15(5):24-27. [14] 林海涛,史衍玺.铅、镉胁迫对茶树根系分泌有机酸的影响[J].山东农业科学,2005,2005(2):32-34. [15] TAKAYUKI S,YOSHIYUKI T,MICHIYO A,et al.A domain-based approach for analyzing the function of aluminum-activated malate transporters from wheat (Triticum aestivum) and arabidopsis thaliana in xenopus oocytes[J].Plant & Cell Physiology,2014,52(12):2126-2138. [16] 姜丽娜,张黛静,林琳,等.低温对小麦幼苗干物质积累及根系分泌物的影响[J].麦类作物学报,2012,32(6):1171-1176. [17] 王亚,冯发运,葛静,等.植物根系分泌物对土壤污染修复的作用及影响机理[J].生态学报,2022,42(3):829-842. [18] 杨可昀,宋海亮,黄诗蓓,等.根系分泌物调控对人工湿地去除雌激素的影响[J].环境科学研究,2016,29(1):59-66. [19] 艳徐,师晨迪.有机污染土壤植物修复技术研究[J].世界生态学,2020,9(1):5. [20] 刘琳,向衡,刘玉洪,等.人工湿地中土霉素胁迫对杂交狼尾草及土壤特征的影响[J].环境工程,2014,32(5):20-24. [21] 汤贝贝,张振华,卢信,等.养殖废水中抗生素的植物修复研究进展[J].江苏农业学报,2017,33(1):224-232. [22] GUJARATHI N P,HANEY B J,PARK H J,et al.Hairy roots of helianthus annuus:a model system to study phytoremediation of tetracycline and oxytetracycline[J].Biotechnology Progress,2008,5(2):44-48. [23] 郝全龙,谯华,周从直,等.腐殖质吸附土壤有机污染物研究进展[J].当代化工,2014,43(10):2068-2071. [24] 周季妮,杨琛,宋之怡,等.四环素与镉复合污染对水稻根系的影响[J].环境科学学报,2021,41(4):1518-1528. [25] WANG Y J,SINGH R P,ZHANG J,et al.Nitrogen removal performance of microbial fuel cell enhanced bioretention system[J].Journal of Water Supply:Research and Technology,2019,2019(7/8):68. [26] WANG Y J,SINGH R P,GENG C,et al.Carbon-to-nitrogen ratio influence on the performance of bioretention for wastewater treatment[J].Environmental Science and Pollution Research,2020,27(15):17652-17660. [27] WANG Y J,CHEN T J,LI J,et al.The influence of electrode spacing on the performance of bioretention cell coupled with MFC[J].The Royal Society,2021,47(8):1285-1289. [28] WANG Y J,LI J,YUAN Y,et al.La(OH)3 loaded magnetic nanocomposites derived from sugarcane bagasse cellulose for phosphate adsorption:characterization,performance and mechanism[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2021,626(2):127-136. [29] WANG Y J,SI Y M,YANG S,et al.Study on flow distribution pattern and conductivity of porous media in bioretention cells[J].Bioengineered,2021,127(20):21-26. [30] 王亚军,陈甜婧,李金守.无植物生物滞留池连续运行处理污水的渗流特性实验[J].环境工程,2022,40(1):27-31,51. [31] HATT B,MORISON P,FLETCHER T,et al.Stormwater Biofiltration Systems-Adoption Guidelines[C]//Proceedings of the Image & Signal Processing international Conference,F,2009. [32] ZHOU L,YING G,SHAN L,et al.Simultaneous determination of human and veterinary antibiotics in various environmental matrices by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry[J].Journal of Chromatography A,2012,1244(4):76-88. [33] 大连市环境监测中心.水质.总氮的测定.碱性过硫酸钾消解紫外分光光度法:HJ 636—2012 [S].中国:环境保护部,2012-06-01. [34] 袁玉璐,姚元.水质.总磷的测定.钼酸铵分光光度法:GB/T 11893—1989 [S].中国:国家技术监督局,1990-07-01. [35] 王玉功,王华,刘建军,等.沙棘树干茎流液中总氮总磷联合消解的测定方法[J].岩矿测试,2014,33(5):665-669. [36] 李慧芳,王瑜,袁庆华,等.铅胁迫对禾本科牧草生长、生理及Pb2+富集转运的影响[J].草业学报,2015,24(9):163-172. [37] CLAUSEN L,KARLSON U.Phytotoxicity of Sodium Fluoride and Uptake of Fluoride in Willow Trees [J].International Journal of Phytoremediation,2015,17(4):369-376. [38] MOHY-U-DIN N,FARHAN M,WAHID A,et al.Human health risk estimation of antibiotics transferred from wastewater and soil to crops[J].Environmental Science and Pollution Research,2022,30(8):20601-20614. [39] 武剑,DEBELA S A,华倩雯,等.外源抗生素对栽培作物与野生植物的氧化胁迫及其富集转运的差异性[J].南京师大学报(自然科学版),2020,43(2):84-91,99. [40] 王晓娥,张梵,张霞,等.虉草适应湿地环境的解剖结构和组织化学特征研究[J].草业学报,2019,28(1):86-94. [41] 斯日古楞,王明玖,额尔敦花.虉草营养器官解剖结构与抗旱耐涝性及利用之间的关系[J].植物研究,2013,33(4):391-397. [42] 李谦维,高俊琴,梁金凤,等.生物炭添加对不同水氮条件下芦苇生长和氮素吸收的影响[J].生态学报,2021,41(10):3765-3774. [43] 张振华.作物硝态氮转运利用与氮素利用效率的关系[J].植物营养与肥料学报,2017,23(1):217-223. [44] 耿冲冲.抗生素胁迫下生物滞留系统强化脱氮除磷的实验研究[D].兰州:兰州理工大学,2020. [45] 刘昊明.盐度及抗生素对短程硝化反硝化处理效能的影响研究[D].南昌:南昌大学,2021. [46] 苏景振,周金琨,刘早红,等.改良填料和厌氧区对生物滞留池脱氮除磷方法的优化设计[J].南昌大学学报(工科版),2023,45(1):16-21,76. [47] 杨梅,陈霞,孙志宏,等.乳酸菌抗生素抗性的研究进展[J].中国乳品工业,2009,37(12):46-50. [48] HARTMANN A,SCHMID M,TUINEN D,et al.Plant-driven selection of microbes[J].Plant and Soil,2009,44(1/2):321. [49] 侯芸芸.藨草根系分泌物在芘—铅复合污染土壤植物修复中的作用[D].上海:上海大学,2016. [50] 雷红艳.基于多元线性回归的瓦斯放散初速度影响因素试验研究[J].煤矿安全,2022(2):53. [51] 李萌,章从恩,章前,等.基于谱-效相关分析的西红花抗抑郁药效成分的研究[J].中国医院用药评价与分析,2022,22(9):1098-1101. [52] 龚芳芳,樊卫国.外源柠檬酸对石灰性黄壤养分活化及刺梨实生苗养分吸收与生长的影响[J].中国农业科学,2018,51(11):2164-2177.
点击查看大图
计量
- 文章访问数: 113
- HTML全文浏览量: 18
- PDF下载量: 2
- 被引次数: 0