中文核心期刊
CSCD来源期刊(核心库)
中国科技核心期刊
RCCSE中国核心学术期刊
JST China 收录期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

β-FeOOH/TiO2复合催化剂的制备及其光-芬顿催化降解酸性橙Ⅱ性能

丁付革 郭玉祥 袁大英 张必宪 朱靖 徐轶群 胡庆松

丁付革, 郭玉祥, 袁大英, 张必宪, 朱靖, 徐轶群, 胡庆松. β-FeOOH/TiO2复合催化剂的制备及其光-芬顿催化降解酸性橙Ⅱ性能[J]. 环境工程, 2023, 41(8): 75-82,90. doi: 10.13205/j.hjgc.202308010
引用本文: 丁付革, 郭玉祥, 袁大英, 张必宪, 朱靖, 徐轶群, 胡庆松. β-FeOOH/TiO2复合催化剂的制备及其光-芬顿催化降解酸性橙Ⅱ性能[J]. 环境工程, 2023, 41(8): 75-82,90. doi: 10.13205/j.hjgc.202308010
DING Fuge, GUO Yuxiang, YUAN Daying, ZHANG Bixian, ZHU Jing, XU Yiqun, HU Qingsong. CONTROLLABLE CONSTRUCTION OF β-FeOOH/TiO2 NANOCOMPOSITE AND ITS PERFORMANCE IN PHOTO-FENTON DEGRADATION OF ACID ORANGE Ⅱ[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 75-82,90. doi: 10.13205/j.hjgc.202308010
Citation: DING Fuge, GUO Yuxiang, YUAN Daying, ZHANG Bixian, ZHU Jing, XU Yiqun, HU Qingsong. CONTROLLABLE CONSTRUCTION OF β-FeOOH/TiO2 NANOCOMPOSITE AND ITS PERFORMANCE IN PHOTO-FENTON DEGRADATION OF ACID ORANGE Ⅱ[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 75-82,90. doi: 10.13205/j.hjgc.202308010

β-FeOOH/TiO2复合催化剂的制备及其光-芬顿催化降解酸性橙Ⅱ性能

doi: 10.13205/j.hjgc.202308010
基金项目: 

中国博士后科学基金面上资助项目(2021M691389)

沿江城区内源污染控制及生态修复技术研究项目(SHJKJ-2020-28)

详细信息
    作者简介:

    丁付革(1981-),男,本科,高级工程师,主要研究方向为水污染控制工程与资源化。286083327@qq.com

    通讯作者:

    胡庆松(1989-),男,博士研究生,讲师,主要研究方向为水污染控制化学。huqs_890115@126.com

CONTROLLABLE CONSTRUCTION OF β-FeOOH/TiO2 NANOCOMPOSITE AND ITS PERFORMANCE IN PHOTO-FENTON DEGRADATION OF ACID ORANGE Ⅱ

  • 摘要: 采用浸渍-超声-煅烧的方法将β-FeOOH和TiO2复合,制备了不同比例的β-FeOOH/TiO2复合光催化剂来降解酸性橙Ⅱ。通过X-射线粉末衍射仪(XRD)、透射电子显微镜(TEM)、X-射线光电子能谱仪(XPS)、红外光谱仪(FT-IR)研究复合催化剂组成及微观结构。在模拟太阳光照射下,加入H2O2研究复合催化剂光催化降解酸性橙Ⅱ性能,并对其降解机理进行探究。结果表明:当m(β-FeOOH)∶m(TiO2)为3∶1,初始反应pH值为3.05,H2O2的投加浓度为20 mmol/L时,酸性橙Ⅱ降解效率最佳。自由基猝灭实验和电子自旋共振技术(ESR)分析结果表明,在降解酸性橙Ⅱ过程中,羟基自由基(·OH)和超氧自由基(O-2·)是主要的活性氧物种,将酸性橙Ⅱ矿化分解。研究工作为印染废水的治理提供一种新思路。
  • [1] 陈卫刚,武海霞,樊佳炜.活性炭非均相活化不同过硫酸盐降解偶氮染料酸性橙Ⅱ[J].环境工程,2020,38(8):113-119.
    [2] 陈作云.旅客列车集便器废水中抗生素的光芬顿催化降解分析[J].环境工程,2020,38(10):128-133.
    [3] LI X,YU J G,JARONIEC M.Hierarchical photocatalysts[J].Chemical Society Reviews,2016,45:2603-2636.
    [4] CHOWDHURY M,NTIRIBINYANGE M,NYAMAYARO K,et al.Photocatalytic activities of ultra-small β-FeOOH and TiO2 heterojunction structure under simulated solar irradiation[J].Materials Research Bulletin,2015,68:133-141.
    [5] HE S A,LI W,WANG X,et al.High-efficient precious-metal-free g-C3N4-Fe3O4/beta-FeOOH photocatalyst based on double-heterojunction for visible-light-driven hydrogen evolution[J].Applied Surface Science,2020,506:144948.
    [6] WEN Y,WANG Z W,CAI Y H,et al.S-scheme BiVO4/CQDs/beta-FeOOH photocatalyst for efficient degradation of ofloxacin:reactive oxygen species transformation mechanism insight[J].Chemosphere,2022,295:133784.
    [7] YOON Y,KATSUMATA K,SUZUKI N,et al.Rod-shaped beta-FeOOH synthesis for hydrogen production under light irradiation[J].ACS Omega,2021,6:30562-30568.
    [8] ZHENG Y,ZHANG Z S,LI C H,et al.Beta-FeOOH-supported graphitic carbon nitride as an efficient visible light photocatalyst[J].Journal of Molecular Catalysis A:Chemical,2016,423:463-471.
    [9] HONDA K,FUJISHIMA A.Electrochemical photolysis of water at a semiconductor electrode[J].Nature,1972,238:37-38.
    [10] 范云芳.石墨烯负载羟基氧化铁吸附水中氟的研究[D].上海:华东师范大学,2016,51-53.
    [11] KOLENKA Y V,CHURAGULOV B R,KUNST M,et al.Photocatalytic properties of titania powders prepared by hydrothermal method[J].Applied Catalysis B:Environmental,2004,54:51-58.
    [12] FAN Y F,FU D D,ZHOU S Q,et al.Facile synthesis of goethite anchored regenerated grapheme oxide nanocomposite and its application in the removal of fluoride from drinking[J].Desalination and Water Treatment,2016,57:28393-28404.
    [13] ZENG Y,LUO X,LI F,et al.Noble metal-free FeOOH/Li0.1WO3 core-shell nanorods for selective oxidation of methane to methanol with visible-NIR light[J].Environmental Science & Technology,2021,55:7711-7720.
    [14] WANG Z H,JIANG T S,DU Y M,et al.Synthesis of mesoporous titania and the photocatalytic activity for decomposition of methyl orange[J].Materials Letters,2006,60:2493-2496.
    [15] LI J X,XU J H,DAI W L,et al.Direct hydro-alcohol thermal synthesis of special core-shell structured Fe-doped titania microspheres with extended visible light response and enhanced photoactivity[J].Applied Catalysis B:Environmental,2009,85:162-170.
    [16] HU Q S,DI J,WANG B,et al.In-situ preparation of NH2-MIL-125(Ti)/BiOCl composite with accelerating charge carriers for boosting visible light photocatalytic activity[J].Applied Surface Science,2019,466:525-534.
    [17] ZHENG Z,WANG G H,LI W B,et al.Photocatalytic activity of magnetic nano-beta-FeOOH/Fe3O4/biochar composites for the enhanced degradation of methyl orange under visible light[J].Nanomaterials,2021,11:526.
    [18] HU Q S,DONG J T,CHEN Y,et al.In-situ construction of bifunctional MIL-125(Ti)/BiOI reactive adsorbent/photocatalyst with enhanced removal efficiency of organic contaminants[J].Applied Surface Science,2022,583:152423.
    [19] LI R B,CAI M X,XIE Z J,et al.Construction of heterostructured CuFe2O4/g-C3N4 nanocomposite as an efficient visible light photocatalyst with peroxydisulfate for the organic oxidation[J].Applied Catalysis B:Environmental,2019,244:974-982.
    [20] HU J S,ZHANG P F,AN W J,et al.In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater[J].Applied Catalysis B:Environmental,2019,245,130-142.
    [21] CAI C,ZHANG Z Y,LIU J,et al.Visible light-assisted heterogeneous Fenton with ZnFe2O4 for the degradation of Orange Ⅱ in water[J].Applied Catalysis B:Environmental,2016,182:456-468.
    [22] ZHANG Z B,ZHUANG J,GAO L Z,et al.Decomposing phenol by the hidden talent of ferromagnetic nanoparticles[J].Chemosphere,2008,73:1524-1528.
    [23] ZHOU Y,LIU F S,YU S T,Preparation and photo-catalytic activities of FeOOH/ZnO/MMT composite[J].Applied Surface Science,2015,355:861-867.
    [24] BHACHU D S,EGDELL R G,SANKER G,et al.Electronic properties of antimony-doped anatase TiO2 thin films prepared by aerosol assisted chemical vapour deposition[J].Journal of Materials Chemistry C,2017,5:9694-9701.
    [25] 胡庆松.卤氧铋复合催化剂构建及其增强光催化去除水中污染物研究[D].上海:华东师范大学,2020,35-38.
    [26] 朱永法,姚文清,宗瑞隆.光催化-环境净化与绿色能源应用探索[M].北京:化学工业出版社,2014:9-12.
    [27] 张凯杰,冯骞,商卫纯,等.壳聚糖-银/二氧化钛核壳复合小球的制备及其对布洛芬的降解性能[J].环境工程,2022,40(7):9-17.
    [28] 张鹏,徐瑞霞,刘舒怡,等.MOFs衍生CuO/ZnO催化剂的制备及其光催化性能的研究[J].环境工程,2022,40(4):35-42.
    [29] DESIPIO M M,BRAMER S E V,THORPE R,et al.Photocatalytic and photo-fenton activity of iron oxide-doped carbon nitride in 3D printed and LED driven photon concentrator[J].Journal of Hazardous Materials,2019,376:178-187.
  • 加载中
计量
  • 文章访问数:  49
  • HTML全文浏览量:  12
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-25
  • 网络出版日期:  2023-11-15

目录

    /

    返回文章
    返回