AN EXPERIMENTAL STUDY ON PRODUCTION OF ORGANIC FERTILIZER FROM FOOD WASTE BY HYDROTHERMAL CONVERSION
-
摘要: 水热技术在处理厨余垃圾时具有高效、清洁、安全等优势,近年来受到国内外学者的广泛关注。以模拟厨余垃圾为对象,开展了厨余垃圾水热转化制取有机肥的试验研究,试验工况为反应温度175~235 ℃,停留时间20~80 min。结果表明:与传统的堆肥处理相比,由于没有微生物损耗,厨余垃圾水热处理后肥效更高,有机质、总养分含量分别为55.77%~72.92%、7.39%~8.20%,远高于NY 525—2021《有机肥料》标准值。在一定温度范围内,水热过程能够促进腐植酸的形成,在205 ℃、40 min工况下腐植酸含量达到21.70%,腐殖化指数(胡敏酸/富里酸)为1.67,表现出极高的腐熟度。水热处理能够促进单价金属盐的迁移,大部分单价金属盐(Na、K)通过反应后从固相迁移到液相中,而大部分多价金属盐(Ca、Mg、Fe)则保留在固相中。Abstract: Hydrothermal treatment has the advantages of high efficiency, cleanness, and safety in food waste disposal, which has been widely concerned by global scholars in recent years. In this paper, the experimental study on the production of organic fertilizer from simulated food waste by hydrothermal conversion was carried out at a temperature of 175 to 235 ℃, and a retention time of 20 to 80 min. Results showed that the fertilizer efficiency of food waste after hydrothermal treatment was higher than traditional composting treatment. The content of organic matter and total nutrients were 55.77% to 72.92% and 7.39% to 8.20% respectively, far higher than the limiting values in the Standard of Organic Fertilizer (NY 525—2021). Hydrothermal process could promote the formation of humic acid. With a retention time of 40 min at 205 ℃, the humic acid content reached 21.70%, and the humification index (the ratio of humic to fulvic) could be 1.67, reflecting a very high degree of maturity. Hydrothermal treatment could enhance the migration of salts. Most monovalent metals (potassium and sodium) resided into the liquid phase from the solid phase, while most multivalent metals (calcium, magnesium, and iron) remained integrated within the solid phase.
-
Key words:
- food waste /
- hydrothermal conversion /
- organic fertilizer /
- humic acids /
- inorganic salts
-
[1] 国家统计局.中国统计年鉴2017—2021[Z/OL]. [2] JIN C X,SUN S Q,YANG D H,et al.Anaerobic digestion:an alternative resource treatment option for food waste in China[J].Science of the Total Environment,2021,779. [3] 毕珠洁,邰俊,陈奕,等.上海市有机垃圾原料特性研究[J].环境卫生工程,2016,24(4):5-7. [4] 毕峰.社区易腐垃圾就地成肥设备中试及其臭气排放特征研究[D].杭州:浙江大学,2020. [5] 周传斌,刘晶茹,王如松,等.城市社区生活垃圾减量化的集成技术研究[J].环境科学,2010,31(11):2768-2773. [6] 姚武,顾燕青,巫阳,等.畜粪堆肥过程中腐殖质形成特征研究进展[J].杭州师范大学学报(自然科学版),2014(5):517-522. [7] 黄华明.厨馀堆肥腐熟度评估分析[J].安徽农业科学,2011,39(3):1475-1478. [8] 陈晨,谭昊,李文祥,等.典型村镇有机废物有机肥产品的品质表征[J].中国沼气,2022,40(2):54-59. [9] 张莹,谷萌,孙捷,等.餐厨垃圾水热炭化产物分配规律及液固产物特性研究[J].中国环境科学,2022,42(1):239-249. [10] LANG Q Q,ZHANG B,LIU Z G,et al.Properties of hydrochars derived from swine manure by CaO assisted hydrothermal carbonization[J].Journal of Environmental Management,2019,233:440-446. [11] YANG F,ZHANG S S,CHENG K,et al.A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation[J].Science of the Total Environment,2019,686:1140-1151. [12] 马小妹.“水热魔法”助力湿垃圾变废为宝——专访上海交通大学环境科学与工程学院教授金放鸣[J].环境教育,2019(8):26-29. [13] IDOWU I,LI L,FLORA J R V,et al.Hydrothermal carbonization of food waste for nutrient recovery and reuse[J].Waste Management,2017,69:480-491. [14] LI B,YIN T,UDUGAMA I A,et al.Food waste and the embedded phosphorus footprint in China[J].Journal of Cleaner Production,2020,252(10):119909. [15] WANG L X,CHI Y,DU K,et al.Hydrothermal treatment of food waste for bio-fertilizer production:formation and regulation of humus substances in hydrochar[J].Science of the Total Environment,2023,14(8):2767-2781. [16] 文启孝.土壤有机质研究法[M].北京:农业出版社,1984:136-148. [17] SHARMA H B,PANIGRAHI S,DUBEY B K.Food waste hydrothermal carbonization:study on the effects of reaction severities,pelletization and framework development using approaches of the circular economy[J].Bioresource Technology,2021,333:125187. [18] LIN C.A negative-pressure aeration system for composting food wastes[J].Bioresource Technology,2008,99(16):7651-7656. [19] 舒迪,熊晨,池涌.厨余垃圾水热处理的腐殖化特性研究[J].环境科学学报,2016,36(7):2563-2570. [20] 姚武,顾燕青,巫阳,等.畜粪堆肥过程中腐殖质形成特征研究进展[J].杭州师范大学学报(自然科学版),2014(5):517-522. [21] 王文祥,张雷,李爱民.废弃生物质水热腐殖化产物与介质酸碱性响应关系[J].大连理工大学学报,2022,62(1):9-17. [22] 唐璐.不同堆肥条件对堆肥过程中碳素损失及腐殖质形成的影响研究[D].杭州:杭州师范大学,2016. [23] 魏自民,王世平,席北斗,等.生活垃圾堆肥过程中腐殖质及有机态氮组分的变化[J].环境科学学报,2007,27(2):235-240. [24] 王蕊,邰俊,赵由才,等.餐厨垃圾资源化衍生品的堆肥中试实验[J].环境工程学报,2021,15(9):3012-3019. [25] 苏兰茜,张峰,白亭玉,等.不同钾素处理下菠萝蜜幼苗生长及养分吸收特征[J].热带作物学报,2022,43(3):520-528. [26] 宋晓,刘轶群,李绍伟,等.中量元素Ca、Mg对小麦产量的影响[J].陕西农业科学,2013(6):13-14. [27] 涂淑兰.盐渍土壤深根性植物(梨树)枯死及其原因分析[D].北京:中国农业大学,2006. [28] SMITH A M,SINGH S,ROSS A B.Fate of inorganic material during hydrothermal carbonisation of biomass:Influence of feedstock on combustion behaviour of hydrochar[J].Fuel,2016,169:135-145. [29] ZHANG C,SHAO M S,WU H N,et al.Management and valorization of digestate from food waste via hydrothermal[J].Resources,Conservation & Recycling,2021,171:105639. [30] ANDRES S,ELENA D,RUBIA M A,et al.Fate of nutrients during hydrothermal treatment of food waste[J].Bioresource Technology,2021,342:125954. [31] REZA M T,LYNAM J G,UDDIM M H,et al.Hydrothermal carbonization:fate of inorganics[J].Biomass and Bioenergy,2013,49:86-94.
点击查看大图
计量
- 文章访问数: 130
- HTML全文浏览量: 22
- PDF下载量: 5
- 被引次数: 0