EXPERIMENTAL STUDY ON REMEDIATION OF HEAVY METAL CONTAMINATED SOIL BY EICP COMBINED WITH BIOCHAR
-
摘要: 脲酶诱导碳酸钙沉淀(enzyme induced calcite precipitation,EICP)作为一种新型仿生物矿化技术,对修复重金属污染土壤表现出较大潜力。开展EICP联合生物炭修复铅污染土中的探究试验,通过毒性浸出和碳酸钙量测试,评价固化效果并分析其作用机制。结果表明:EICP可有效固化铅,当EICP处理试剂加入量为6.6%时的固化率最高,并呈现固化率随着碳酸钙量增加而增大规律;与单一使用EICP相比,EICP联合生物炭修复固化铅污染土的效果显著提高,且生物炭掺入量为6.6%时固化率最高;EICP联合生物炭提高铅固化效果机制为:一是由于生物炭呈碱性,比表面大利于吸附金属等特性固化铅;二是生物炭的大量微小孔隙,为EICP矿化反应提供场所,促进EICP矿化反应。研究结果可为使用EICP技术修复重金属污染土提供新思路及试验指导。Abstract: Urease induced calcite precipitation (EICP), a new biomimetic mineralization technology, shows great potential in repairing heavy metal contaminated soil. The technical routine of combining EICP with biochar to solidify Pb in contaminated soil was carried out, and the solidification effect was evaluated and the mechanism was discussed by toxicity leaching and calcium carbonate content test. The result showed that EICP could effectively solidify Pb, and the solidification rate was the highest when the amount of EICP treatment reagent was 6.6%, and the solidification rate increased with the increase of calcium carbonate content. Compared with EICP applied alone, EICP combined with biochar significantly improved the curing effect of lead-contaminated soil, and the incorporation amount of biochar was 6.6%, showing the highest solidification rate. The mechanism of EICP combined with biochar to improve the Pb solidification effect, was that the biochar is alkaline and can adsorb Pb on a large specific surface area, and the numerous tiny pores of the biochar can provide a site for the EICP mineralization reaction. This study provided new ideas and experimental guidance for EICP remediation of heavy metal contaminated soil.
-
Key words:
- EICP /
- solidification /
- remediation /
- biochar /
- contaminated soil /
- heavy metal
-
[1] 孙朋成,黄占斌,唐可,等.土壤重金属污染治理的化学固化研究进展[J].环境工程,2014,32(1):158-161. [2] 刘伟,张永波,贾亚敏.重金属污染农田植物修复及强化措施研究进展[J].环境工程,2019,37(5):29-33,44. [3] 郑太辉,王凌云,陈晓安.矿区重金属植被修复研究进展和趋势[J].环境工程,2015,33(6):148-152. [4] HAMDAM N M.Applications of enzyme induced carbonate precipitation (EICP) for soil improvement[D].State of Arizona:Arizona State University,2015. [5] MUGWAR A J,HARBOTTLE M J.Toxicity effects on metal sequestration by microbially-induced carbonate precipitation[J].Journal of Hazardous Materials,2016,314:237-248. [6] WANG L,CHENG W C,XUE,Z F,et al.Effects of the Urease Concentration and Calcium Source on Enzyme-Induced Carbonate Precipitation for Lead Remediation[J].Frontiers in Chemistry,2022,10:892090. [7] KUMARI D,QIAN X Y,PAN X L,et al.Chapter two-microbially-induced carbonate precipitation for immobilization of toxic metals[J].In Advances in Applied Microbiology,2016,94:79-108. [8] 朱德强.含方解石物质修复镉污染土壤及机制初探[D].沈阳:沈阳农业大学,2016. [9] MOGHAL A,LATEEF M,MOHAMMED S,et al.Efficacy of enzymatically induced calcium carbonate precipitation in the retention of heavy metal ions[J].Sustainability,2020,12(17):7019. [10] LI W L,ZHANG Y H,ACHAL V.Mechanisms of cadmium retention on enzyme-induced carbonate precipitation (EICP) of Ca/Mg:nucleation,chemisorption,and co-precipitation[J].Journal of Environmental Chemical Engineering,2022,10 (3). [11] 边汉亮,张旭钢,韩一,等.大豆脲酶对Zn2+污染土的修复试验研究[J].工业建筑,2022,52(11):67-70,66. [12] AHENKORAH I,RAHMAN M M,KARIM M R,et al.Enzyme induced calcium carbonate precipitation and its engineering application:a systematic review and meta-analysis[J].Construction and Building Materials,2021:308. [13] LEHMANN J,RILLIG M C,THIES J,et al.Biochar effects on soil biota:a review[J].Soil Biology & Biochemistry,2011,43(9):1812-1836. [14] 杨京民,GAHONZIRE B,姜娜,等.镉、砷复合污染土壤钝化修复研究进展[J].环境污染与防治,2021,43(9):1189-1195,1200. [15] PENIDO E S,MARTINS G C,MENDES T B M,et al.Combining biochar and sewage sludge for immobilization of heavy metals in mining soils[J].Ecotoxicology and Environmental Safety,2019,172:326-333. [16] 荆延德,巩晨,孙小银,等.棉花、花生秸秆生物炭对棕壤中 Cu(Ⅱ)运移的影响[J].水土保持通报,2016,36(3):50-55. [17] 王苗苗,陈明,郑小俊,等.生物炭在土壤重金属污染修复的应用研究进展[J].应用化工,2022,51(6):1729-1735,1740. [18] BEESLEY L,MORENO-JIMENEZ E,GOMEZ-EYLES J L.Effects of biochar and green waste compost amendments on mobility,bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil[J].Environmental Pollution,2010,158(6):2282-2287. [19] 刘孝利,曾昭霞,陈求稳,等.生物炭与石灰添加对稻田土壤重金属面源负荷影响[J].水利学报,2014,45(6):682-690. [20] ALMAJED A,AHMAD M,USMAN A R A,et al.Fabrication of sand-based novel adsorbents embedded with biochar or binding agents via calcite precipitation for sulfathiazole scavenging[J].Journal of Hazardous Materials,2021,405:124249. [21] ALMAJED A.Enzyme induced cementation of biochar-intercalated soil:fabrication and characterization[J].Arabian Journal of Geosciences,2019,12(13). [22] 冯亦立,王家源.燃煤电厂重金属排放与周边土壤重金属污染评价[J].环境污染与防治,2022,44(4):510-514. [23] 董瑾,刘效彬.EICP技术改良传统三合土性能研究[J/OL].建筑材料学报:1-11.[2022-06-29].http://kns.cnki.net/kcms/detail/31.1764.TU.20210802.1708.004.html. [24] KRAJEWSKA B.Urease-aided calcium carbonate mineralization for engineering applications:a review[J].Journal of Advanced Research,2018,13:59-67. [25] NAM I H,ROH S B,PARK M J,et al.Immobilization of heavy metal contaminated mine wastes using Canavalia ensiformis extract[J].Catena,2016,136:53-58. [26] 胡朋成,尹娟,魏小东,等.不同水氮处理对马铃薯品质及土壤脲酶活性的影响[J].江苏农业科学,2022,50(6):87-92. [27] CHEN M J,LI Y F,JIANG X R,et al.Study on soil physical structure after the bioremediation of Pb pollution using microbial-induced carbonate precipitation methodology[J].Journal of Hazardous Materials,2021,411:125103. [28] ZHU X J,KUMARI D,HUANG M S,et al.Biosynthesis of CdS nanoparticles through microbial induced calcite precipitation[J].Materials & Design,2016,98:209-214. [29] 常道琴,宋乃平,岳健敏,等.微生物诱导碳酸钙沉淀对干旱半干旱区铜尾矿污染治理效果[J].水土保持学报,2022,36(4):365-374. [30] 王红,夏雯,卢平,等.生物炭对土壤中重金属铅和锌的吸附特性[J].环境科学,2017,38(9):3944-3952. [31] 魏延超.土壤重金属镍锡铅复合污染修复剂的研制[D].呼和浩特:内蒙古大学,2020. [32] 吴敏,高玉峰,何稼,等.大豆脲酶诱导碳酸钙沉积与黄原胶联合防风固沙室内试验研究[J].岩土工程学报,2020,42(10):1914-1921. [33] JIM H.Characterization of microbial life colonizing biochar and biochar amended soils[D].Ithaca:Cornell University,2010.
点击查看大图
计量
- 文章访问数: 184
- HTML全文浏览量: 31
- PDF下载量: 5
- 被引次数: 0